
PNNL-14170

Implementation of the AES as a Hash
Function for Confirming the Identity of
Software on a Computer System

R.R. Hansen R.T. Kouzes
R.B. Bass N.D. Mileson

January 2003

Prepared for the U.S. Department of Energy
under Contract DE-AC06-76RL01830

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any
agency thereof, nor Battelle Memorial Institute, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government
or any agency thereof, or Battelle Memorial Institute. The views and opinions
of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY

operated by
BATTELLE

for the
UNITED STATES DEPARTMENT OF ENERGY

under Contract DE-ACO6-76RL0183O

Printed in the United States of America

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information,

P.O. Box 62, Oak Ridge, TN 37831-0062;
ph: (865) 576-8401
fax: (865) 576-5728

email: reports@adonis.osti.gov

Available to the public from the National Technical Information Service,
U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161

ph: (800) 553-6847
fax: (703) 605-6900

email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/ordering.htm

 This document was printed on recycled paper.

(8/00)

 PNNL-14170

Implementation of the AES as a Hash
Function for Confirming the Identity of
Software on a Computer System

Randy Hansen
Bob Bass
Richard Kouzes
Nick Mileson

January 15, 2003

Prepared for the U.S. Department of Defense
Defense Threat Reduction Agency

Pacific Northwest National Laboratory
Richland, Washington 99352

 PNNL-14170

Implementation of the AES as a Hash
Function for Confirming the Identity of
Software on a Computer System

1 INTRODUCTION
This paper provides a brief overview of the implementation of the Advanced Encryption
Standard (AES) as a hash function for confirming the identity of software resident on a
computer system.

The PNNL Software Authentication team chose to use a hash function to confirm
software identity on a system for situations where: (1) there is limited time to perform the
confirmation and (2) access to the system is restricted to keyboard or thumbwheel input
and output can only be displayed on a monitor.

PNNL reviewed three popular algorithms: the Secure Hash Algorithm – 1 (SHA-1), the
Message Digest – 5 (MD-5), and the Advanced Encryption Standard (AES) and selected
the AES to incorporate in software confirmation tool we developed. This paper gives a
brief overview of the SHA-1, MD-5, and the AES and sites references for further detail.
It then explains the overall processing steps of the AES to reduce a large amount of
generic data—the plain text, such is present in memory and other data storage media in a
computer system, to a small amount of data—the hash digest, which is a mathematically
unique representation or signature of the former that could be displayed on a computer’s
monitor.

This paper starts with a simple definition and example to illustrate the use of a hash
function. It concludes with a description of how the software confirmation tool uses the
hash function to confirm the identity of software on a computer system.

2 DEFINITION AND EXAMPLE OF THE USE OF HASH FUNCTIONS
In general a hash function involves the process of taking some data, efficiently reducing
the data into a unique code, and, if necessary, saving that code in specified memory. The
Federal Information Processing Standards Publication (FIPS) 197 defines a Hash
Function as follows:

An approved mathematical function that maps a string of arbitrary length (up to a pre-determined
maximum size) to a fixed length string. It may be used to produce a checksum, called a hash value or
message digest, for a potentially long string or message. (Federal Information Processing Standards
Publication 197, page 2)

A simple example is taking a name, reducing the name to a single letter or number, and
storing the smaller name in memory. There are many ways to reduce data into a unique
code, each way with its own degree of complexity and efficiency. The following is a
possible implementation of a hash function:

- 1 -

 PNNL-14170

• Take some data – like this name: JEREMY

• Now break up the name into some unique code:

NOTE: In this example, the letters will be changed into the corresponding ASCII
number and then the numbers will be added together.

J + E + R + E + M + Y

74 + 69 + 82 + 69 + 77 + 89 = 460

• The name JEREMY has the unique code of 460 for this example. If necessary, The
code 460 can be later identified as the name JEREMY by looking in a memory
location addressed 460:

Memory locations

JEREMY

458 459 460 461 462

Example 1: Simple Hash Example

3 ALGORITHM OVERVIEW

3.1 Secure Hash Algorithm – 1 (SHA-1)
The SHA-1 is a hash algorithm designed to be used with the Digital Signature Algorithm
(DSA) to generate or verify a signature for electronic mail, electronic funds transfer,
software distribution, data storage, and other applications that require data integrity
assurance and data origin authentication.

The SHA-1 is closely modeled after the Message Digest - 4 (MD-4.) For messages less
than 264 bits, the algorithm produces a 160-bit signature of the original message.

With enough time and money, the SHA-1 can be conquered by hackers. It isn’t 100
percent secure. In addition, there will always be a compromise in speed verses security.
The larger (in bits) the message digest is, the more secure the transfer but the slower the
speed. A disadvantage might arise with slow and overprotected data or with fast and
under protected data.

For more information on the SHA-1 see the following reference:

 http://www.itl.nist.gov/fipspubs/fip180-1.htm

3.2 Message Digest – 5 (MD-5)
"[The MD5 algorithm] takes as input a message of arbitrary length and produces as
output a 128-bit "fingerprint" or "message digest" of the input. It is conjectured that it is
computationally infeasible to produce two messages having the same message digest, or
to produce any message having a given prespecified target message digest. The MD5
algorithm is intended for digital signature applications, where a large file must be

- 2 -

http://www.itl.nist.gov/fipspubs/fip180-1.htm

 PNNL-14170

"compressed" in a secure manner before being encrypted with a private (secret) key
under a public-key cryptosystem such as RSA."

Though the MD-5 is a strong algorithm, it is not as internationally recognized as the
AES.

For more information on the MD-5, see the following reference:

 http://rfc.sunsite.dk/rfc/rfc1321.html

3.3 Rijndael Algorithm [Advanced Encryption Standard (AES)]
The Rijndael algorithm is the algorithm selected by NIST as the Advanced Encryption
Standard (AES). The AES is a new Federal Information Processing Standard (FIPS)
Publication that specifies a cryptographic algorithm for use by U.S. Government
organizations to protect sensitive (unclassified) information.

Rijndael is reported to be a very good performer in both hardware and software across a
wide range of computing environments. It is relatively easy to set up, and it is flexible in
terms of block and key size. Rijndael also has low memory requirements, which makes it
suitable as a on-board application where memory is restricted.

In its selection of the Rijndael algorithm as the AES, NIST was looking for an algorithm
that could be widely used on a voluntary basis by organizations, institutions, and
individuals outside of the U.S. Government - and outside of the United States.

For more information of the AES, see the following reference:

 http://csrc.nist.gov/CryptoToolkit/aes/

4 PROCESSING STEPS FOR THE AES
The basic steps of AES algorithm are given here. The steps process “plain text”;
however, for software confirmation this “plain text” is the binary representation of
software and data of interest within a target computer system. The process produces a
“hash digest” that represents a unique and very condensed signature of the “plain text”.

The process uses four main components that are built into the algorithm or entered as
input – the plain text (input), a user key (input), a fixed polynomial (defined within the
algorithm), and the S-Box Matrix (actually generated by the algorithm) to generate a hash
digest. The key and hash digest can be independently specified at 128, 192, or 256 bits.
The steps that follow assume 128 bits for each.

Step 1 Generate the initial key matrix by creating and extracting from the key schedule1.
Then generate the S-Box Matrix2 within the algorithm for later use.

- 3 -

1 Appendix A discusses Key Expansion for a 128-bit key

http://rfc.sunsite.dk/rfc/rfc1321.html
http://csrc.nist.gov/CryptoToolkit/aes/

 PNNL-14170

Step 2 Transpose the Key Matrix to match the column-oriented State Matrix.

=

′

FB
EA
D
C

FEDC
BA

000703
000602
0090501
0080400

0000
000908
07060504
03020100

 Key Matrix Transposed Key Matrix

Equation 1: Transpose Key Matrix to Match Column-Oriented State Matrix

Step 3 Retrieve the first (or next) 16 bytes of the plain text and reshape into a matrix
with four rows and four columns. This matrix is the State Matrix.

⇒

FFBB
EEAA
DD
CC

FFEEDDCCBBAA

7733
6622

995511
884400

99887766554433221100

 State Matrix

Equation 2: Reshaping the 16 bytes (128 bits) of “Plain Text” into a 4 x 4 Matrix

Step 4 Bit-wise XOR3 the State Matrix and the Transposed Key Matrix to form a New
State Matrix.

=

⊕

007030
006020
0905010
0804000

000703
000602
0090501
0080400

7733
6622

995511
884400

FB
EA
D
C

FB
EA
D
C

FFBB
EEAA
DD
CC

 State Matrix Transposed Key Matrix New State Matrix

Equation 3: Bit-wise XOR of State Matrix and Key Matrix

2 Appendix B discusses the formation of the S-Box Matrix

- 4 -

3 Appendix C shows an example of a Bit-wise XOR.

 PNNL-14170

Step 5 Perform a Round Transformation

5.a Replace each element of New State Matrix with an element from the S-Box
Matrix4. Using each value in the New State Matrix as an address into the S-Box
Matrix, substitute the value at the corresponding address in the S-Box Matrix into
the State Matrix After Substitution

⇒

xxxxxxxx
xxxxxxxx
xxxxxx
xxxxxxxx

xxxxxxxx
xxxxxxxx
xxxxxx
xxxxxxxx

53

50

onSubstitutiAfter Matrix State Matrix State New

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

53

F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0

F E D C BA 9 8 7 6 5 4 3 2 1 0
MatrixBox -S

Equation 4: Replacement of One Element of State Matrix by Appropriate S-Box Element

For example:

- 5 -

4 Appendix B discusses the formation of the S-Box Matrix.

 PNNL-14170

⇒

CE
EEDB

CA
BACD

FB
EA
D
C

875104
1007

706053
0963

007030
006020
0905010
0804000

onSubstitutiAfter Matrix State Matrix State New

299416842608918
8719948969119881
573561060348665370
748646122578

4566945863787
32524064903320

846889022248160
7741744975130

6538992840351
0294585334430

6512000153
63520561128309

8012079059618323704
5534733626937
24047597982

6701305662777763

F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0

A 9 8 7 6 5 4 3 2 1 0
MatrixBox -S

DEBFDAC
EBEDFE

EFBE
DDECBACEBA

FCAEDDDCE
ACDCCAAE
BEEADCF
EACFECCCD

DABBCFDFA
FDFBAAEFD

BECBABBFCEDD
DBAAEBAC

ACC
EACCFFFDB
ADADFFADCCA

CFBFBC

165400
28559

911869
8841
08765
794959162

0514
73195643

231021
893507

584439
8423293
752272
15318711

07249
7672
F E D C B

BBBF
DFCEE

EDCB
ABBDBF

AEAEA
E

DBBEDE
DD

DFFF
AFCF
CFCA

FEB
BEBE

DF
CACAF

ABDFEB

Example 2: Substitution of S-Box Matrix Elements into the State Matrix After Substitution

5.b Shift the rows of the State Matrix After Substitution to the left to form the Left-
Shifted State Matrix. Each row is shifted an additional position to the left: the first
row is not shifted, the second row is shifted one position to the left, the third row is
shifted two positions to the left, and the fourth row is shifted three positions to the
left.

⇒

751048
0710

706053
0963

875104
1007

706053
0963

Matrix State Shifted-Lefton SubstitutiAfter Matrix State

EC
DBEE
CA
BACD

CE
EEDB

CA
BACD

Equation 5: Shifting Rows to the Left.

- 6 -

 PNNL-14170

5.c Apply a MixColumns Transformation to the Left-Shifted State Matrix to produce
the B State Matrix. Left multiplying the Left-Shifted State Matrix by a Fixed
Polynomial (P) accomplishes a MixColumns Transformation.

SP

BBBB
BBBB
BBBB
BBBB

•=

44434241

34333231

24232221

14131211

, where []

•=
j
j
j
j

iiiiij

S
S
S
S

PPPPB
2
2
2
1

4321

 xorwise-bit
tionmultiplica modulo polynomialbinary

:where
),()()()(44332211

=⊕
=

⊕⊕⊕=

o

oooo jijijijiij SPSPSPSPB

Equation 6: Left Multiplication of the State Matrix by Fix Polynomial Matrix (P).

:where
Matrix State B

 ,

1299215
9364
9572

17575

751048
0710

706053
0963

02010103
03020101
01302001
01010302

Matrix State Shifted-Left Matrix Poly Fixed

44434241

34333231

24232221

14131211

44434241

34333231

24232221

14131211

=

•

=

A
FBBC
BBEF
DFF

BBBB
BBBB
BBBB
BBBB

EC
DBEE
CA
BACD

BBBB
BBBB
BBBB
BBBB

[] 5)0401()103()6002()0901(

04
1

60
09

0103020122 FE
E

B =∗⊕∗⊕∗⊕∗=

•=

Example 3: B State Matrix after the MixColumn Transformation

- 7 -

 PNNL-14170

5.d Bit-wise XOR the B-State Matrix with the transpose of the Next Key Matrix, which
is the next four rows of the Key Schedule, to produce the Round Transformed
Matrix (see Appendix A for Key Schedule definition.)

=

⊕

4812
843182

68585
810889

1
76787274

6
626

1299215
9364
9572

17575
Matrix dTransforme Round Matrix Key Next Matrix State B

EFCB
DD

CEA
ED

FEFFAFD

ABAAFAA
DDADD

A
FBBC
BBEF
DFF

Equation 7: Bit-Wise XOR of the B State Matrix and the Next Key Matrix.

Step 6 Repeat the Round Transformation eight more times (Step 5).

Step 7 Perform the S-Box substitution described in Step Step 5 using the Round
Transformed Matrix formed in Step 6.

Step 8 Shift the rows of the State Matrix After Substitution from Step 7 as described in
Step 5.b .

Step 9 Perform a Bit-wise XOR the outputted matrix from 0 as described in Step 5.d .

The final digest value for the entire plain text is generated by repeating 0- Step 8 on the
remaining plain text, 16 bytes at a time. After Step 8 the resulting 16-byte, Round-
Transformed State Matrix is the cipher text of the 16-byte plain text input. The iterative
process through the remaining plain text uses the cipher text of the previous 16-bytes of
plan text as the Matrix Key for the next 16 bytes of plain text. The final digest value is
the Step 8 cipher text of the last 16 bytes of the plain text.

- 8 -

 PNNL-14170

5 THE SOFTWARE CONFIRMATION TOOL
PNNL development of a multi-purpose software tool that can read any selection from all
of a system’s addressable memory (RAM or ROM), IO registers, and storage devices
(e.g., standard or solid-state disks) and perform a hash on them.

A user can confirm the software on the target computer system by comparing the hash
digest the tool generates for a specific user-entered key with the hash digest generated by
the same process and the same key on a validated, duplicate system.

Prior to using this tool for software confirmation, it is necessary to map the target
computer system to determine the range of addresses (for each of the system’s memory
devices) that will be input to the tool’s hash function. The mapping must identify all the
addressable memory locations in RAM, I/O registers, and the storage devices that are
expected to remain unchanged (static) when all the code is loaded on the system and the
system is performing its functions. It is only the values in the static memory locations that
the tool can hash and generate a unique hash digest for a given input key.

The byte values in the selected range of all selected memory devices, taken as a whole,
constitute the “plain text” input to the hash function. The tool treats non-static values or
ranges of values as a specific constant and includes them in the “plain text” input, or if
the ranges are large and multiples of 16 bytes, it can skip them and not include them as
input. The tool uses the steps of Section 4 and processes the entire selection, 16 bytes at a
time. When the tool completes the hash process, it displays the hash digest on the systems
monitor for the user to copy down on a piece of paper or to memorize.

- 9 -

 PNNL-14170

Appendix A Key Expansion For 128-bit key

The AES algorithm takes the original cipher key and uses a key expansion routine to
make a key schedule. Upon completion of the key expansion, the resulting key schedule
is 4-byte words long.

First, the input 4-byte word key is taken into a routine. The routine applies the key to the
S-Box and outputs a new 4-byte word key. The new key is then sent to another function
where cyclic permutation is performed on the key – for example:

Key = [a0, a1, a2, a3] where ai is 1 word (2 bytes)

5.3.1.1.1 Key enters cyclic permutation routine

New Key = [a1, a2, a3, a0]

Now the key will enter the key expansion routine to make a key schedule. In the
expanded key, the first 4 words are just the cipher key. Each following word is equal to
the XOR of the previous word with the word 4 positions earlier – for example, let w[i]
equal an expanded key word:
Original cipher key

w[1], w[2], w[3], w[4], w[4 + 1], w[(4 + 1) + 2], etc.

NOTE: All of the above numbers represent indices of w[].

For words whose positions are a multiple of 4, a transformation is completed before the
w[i – 1] XOR. Then the word is XORed with predetermined round constant. The
transformation consists of a cyclic shift of the bytes and then a table lookup of that byte.

These operations are performed 44 (from w[1] to w[44]) times after the routine for
expanding the 128-bit key is completed. (44 is the arbitrarily chosen number for the AES
algorithm.) The final expanded key has 44-byte words instead of the original 4-byte
words.

(Federal Information Processing Standards Publication 197, page 19-20)

- 10 -

 PNNL-14170

Appendix B S-Box Formation

The S-Box is an invertible matrix composed of two transformations. First, binary
polynomial modulo multiplication (as described in appendix D) is used in finding the
multiplicative inverse of b(x) where b(x) is any non-zero polynomial. This is done by
using the Euclidian Algorithm to find a(x) and c(x):

b(x)a(x) + m(x)c(x) = 1

where m(x) is a modulo polynomial

This means the inverse of b(x) can be represented by

b-1(x) = a(x) mod m(x)

The element {00} is mapped onto itself in this equation.

Next, the following transformation of bi is performed:

bi’ = bi + b(i + 4) mod 8 + b(i + 5) mod 8 + b(i + 6) mod 8 + b(i + 7) mod 8 + ci

Let 0 ≤ i < 8, where bi is the ith bit of the byte, and ci is the ith bit byte c with the defined
value of {63} hexadecimal or {0110 0011} binary. The actual matrix representation of
the equation is as follows:

b0

’

b1
’

b2
’

b3
’

b4
’

b5
’

b6
’

b7
’

b0

b1

b2

b3

b4

b5

b6

b7

1

1

0

0

0

1

1

0

=

1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1

This transformation is performed 256 times until the 16x16, S-Box matrix (found in

) is formed.
Example 2: Substitution of S-Box Matrix Elements into the State Matrix After
Substitution

(Federal Information Processing Standards Publication 197, page 15-16)

- 11 -

 PNNL-14170

Appendix C Example of Bit-Wise XOR

The corresponding elements in the matrices shown below will be bit-wise XORed.

1. The hexadecimal numbers in the matrices must be converted to binary numbers.
010001004401004 ⋅=∴=

⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅

=

11111111101110110111011100110011
11101110101010100110011000100010
11011101100110010101010100010001
11001100100010000100010000000000

7733
6622

995511
884400

FFBB
EEAA
DD
CC

⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅

=

11110000101100000111000000110000
11100000101000000110000000100000
11010000100100000101000000010000
11000000100000000100000000000000

000703
000602
0090501
0080400

FB
EA
D
C

2. The binary numbers are bit-wise XORed.

00000000
00000000
00000000

⋅
⋅⊕
⋅

00000100
01000000
01000100

⋅
⋅⊕
⋅

00001000
10000000
10001000

⋅
⋅⊕
⋅

00001100
11000000
11001100

⋅
⋅⊕
⋅

00000001
00010000
00010001

⋅
⋅⊕
⋅

00000101
01010000
01010101

⋅
⋅⊕
⋅

00001001
10010000
10011001

⋅
⋅⊕
⋅

00001101
11010000
11011101

⋅
⋅⊕
⋅

00000010
00100000
00100010

⋅
⋅⊕
⋅

00000110
01100000
01100110

⋅
⋅⊕
⋅

00001010
10100000
10101010

⋅
⋅⊕
⋅

00001110
11100000
11101110

⋅
⋅⊕
⋅

00000011
00110000
00110011

⋅
⋅⊕
⋅

00000111
01110000
01110111

⋅
⋅⊕
⋅

00001011
10110000
10111011

⋅
⋅⊕
⋅

00001111
11110000
11111111

⋅
⋅⊕
⋅

3. The results are displayed in the final matix.

=

⊕

007030
006020
0905010
0804000

000703
000602
0090501
0080400

7733
6622

995511
884400

FB
EA
D
C

FB
EA
D
C

FFBB
EEAA
DD
CC

- 12 -

 PNNL-14170

Appendix D Binary Polynomial Modulo Multiplication

Example of binary polynomial modulo multiplication:

The modulo equation used in the AES algorithm has to be an irreducible polynomial of
degree eight. This means the equation has only 2 divisors – one and itself. The actual
equation used is:

m(x) = x8 + x4 + x3 + x + 1
or {01}{1b} in hexadecimal notation

First, start with two original hexadecimal bytes: {57} and {83} for example. Next,
expand the bytes into their respective polynomials:

{57} hex =

{0101 0111} binary =

0x7 + 1x6 + 0x5 + 1x4 + 0x3 + 1x2 + 1x1 + 1x0 =

x6 + x4 + x2 + x + 1

{83} hex =

{1000 0011} binary =

1x7 + 0x6 + 0x5 + 0x4 + 0x3 + 0x2 + 1x1 + 1x0 =

x7 + x + 1

Now multiply the two polynomials together:
(x6 + x4 + x2 + x + 1)(x7 + x + 1) = x13 + x11 + x9 + x8 + x7 +

 x7 + x5 + x3 + x2 + x +

 x6 + x4 + x2 + x + 1

 = x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1

Now use the modulo polynomial to ensure the answer’s degree is less than eight so it can
be represented by a single byte:

x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1 modulo (x8 + x4 + x3 + x + 1) =

x7 + x6 + 1 or {c1}
(Federal Information Processing Standards Publication 197, page 10-11)

- 13 -

 PNNL-14170

- 14 -

Reference Page

Federal Information Processing Standards Publication 180, “Announcing the Standard for
Secure Hash Standard”; http://www.itl.nist.gov/fipspubs/fip180-1.htm, April 17,
1995.

Federal Information Processing Standards Publication 197, “Announcing the Advanced
Encryption Standard (AES)”; http://csrc.nist.gov/publications/fips/fips197/fips-
197.pdf, November 26, 2001.

Rivest, R., “The MD-5 Message Digest Algorithm”;http://rfc.sunsite.dk/rfc/rfc1321.html,
April 1992.

http://www.itl.nist.gov/fipspubs/fip180-1.htm
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://rfc.sunsite.dk/rfc/rfc1321.html

	Randy Hansen
	Randy Hansen
	INTRODUCTION
	DEFINITION AND EXAMPLE OF THE USE OF HASH FUNCTIONS
	ALGORITHM OVERVIEW
	Secure Hash Algorithm – 1 \(SHA-1\)
	Message Digest – 5 \(MD-5\)
	Rijndael Algorithm [Advanced Encryption Standard (AES)]

	PROCESSING STEPS FOR THE AES
	THE SOFTWARE CONFIRMATION TOOL
	
	
	
	Key enters cyclic permutation routine

	=

