

Bent Pedersen Nuclear Security Unit Institute for Transuranium Elements - ITU Joint Research Centre

presented at

IPNDV WG3 meeting, 12-13 May 2016 JRC, Ispra site

- > 205 mm thick graphite linear
- 96 fission neutron counters: He-3 in HDPE

3

32 monitors for neutron generator output

- 14-MeV neutron generator (MF Physics Model A-211)
- sealed, D-T mixed beam
- ➢ pulsing: 100 s⁻¹

Joint Research Centre

MF Physics Model A-211, 14-MeV neutron generator

- neutron emission: 2.10^8 /s, 10^6 /burst in 4π angle
- sealed, D-T mixed beam 300-500 hours life
- pulsing of ion source <u>and</u> acceleration voltage no emission between bursts
- neutron burst width: 5-10 μs
- burst repetition rate: 10 - 150 s⁻¹

© Thermo Fisher Scientific Corporation

Features

- sample cavity: 50 cm x 50 cm x 80 cm
- thick graphite linear on all six side
- fission neutron counters: He-3 in polyethylene

- low pressure, thermal flux monitors
- monitor for n-generator output

Commission

Exponential time response function of thermal neutrons

- maximum thermal flux at 280 μs after 14-MeV burst
- thermal neutron lifetime of 1.05±0.02 milliseconds

Detection of prompt fission neutrons - Differential Die-Away technique (DDA)

fissile mass - differential die-away technique

8

Detection of prompt fission neutrons - Differential Die-Away technique (DDA)

fissile mass - differential die-away technique

9

Detection of prompt fission neutrons - Differential Die-Away technique (DDA)

Can we design a compact device for mass assay of small fissile samples by active neutron interrogation?

Purpose:

mass assay of U and Pu samples of small volume

- e.g. smear samples, process samples, liquid solutions
- for accountancy, transport declarations, inventory

Advantages in "compact" design:

- less shielding
- less ³He detector volume
- integrate with existing equipment
- lower price

Requirements:

- high neutron flux at sample position
- long life time in moderator, short life time in detector
- high detection efficiency for fission neutrons

Experimental setup

- 5 detector banks, each composed of:
 - 5 ³He detectors, polyethylene moderator, complete Cd cover fission neutron detection efficiency: 11.6%
- graphite moderator block:
 - reactor grade purity, density 1.67 g/cm³ dimensions: length: 509mm, height: 420mm, width: 402mm distance generator target – sample: 240 mm

sample cavity
 neutron generator
 detector banks

Joint Research Centre

Commission

Experimental results ²³⁹Pu Limit of Detection, 3 sigma of background, meas time 1000s: Singles: $LOD_S = 0.786$ mg • Doubles: $LOD_D = 5.170 \text{ mg}$ $LOD = \frac{3\sqrt{background}}{regression\ slope}$ using: @ neutron emission rate: 0.9*10⁷ s⁻¹. (max rate 2.0*10⁸ s⁻¹)

MCNP simulations, experimental configuration

- 5 detector banks (standard "neutron collar"), each composed of: 5 3He detectors, polyethylene moderator, complete Cd cover fission neutron detection efficiency: 11.6%
- graphite moderator block: reactor grade purity, density 1.67 g/cm3 dimensions:length: 509mm, height: 420mm, width: 402mm distance target–sample: 240 mm

MCNP simulations, improved geometry

- better detector position, 3He in HDPE, Cd cover, 80 mm width
- only 20% more ³He volume
- Moderator zone: max length 600 mm, max width 360 mm, height 360 mm
- Reflector zone: width 80 mm
- 14-MeV source: 45 mm radius for W filter
- Sample cavity: void, radius 10 mm, distance to source 240 mm

vertical cross section

MCNP simulations

Joint Research Centre

Detection of fission neutrons

MCNP simulations,

Integral configurations

Model		$\Phi/\Phi_{ m ref}$	FOM
Experimental configuration	0.529	1.14	0.603
Experimental configuration, W around 14-MeV source	0.526	1.77	0.931
Improved geometry	1	1	1
Improved geometry with W around 14-MeV source	1.00	3.20	3.20
Improved geometry, BeO moderator, Be reflector, W	0.555	17.48	9.70
Improved geometry, C ρ = 2.07 g/cm ³ , Ni reflector, W	0.960	9.22	8.85

What "limit of detection" can we achieve in the compact design?

$$LOD_{improved} = LOD_{experimental} \frac{FOM_{experimental}}{FOM_{improved}} = 785 \mu g \frac{0.603}{8.85} = 53.6 \mu g$$

Assuming:

conservative design:

- graphite moderator of $\rho = 2.07 \text{ g/cm}^3$
- Ni reflector
- W on 14-MeV source

conservative generator operation: neutron emission rate:

0.9*10⁷ s⁻¹ (max rate 2.0*10⁸ s⁻¹)

Prompt Gamma Neutron Activation Analysis - PGNAA

Method

- Interrogation first by <u>fast neutrons</u> later by <u>thermal neutrons</u>
- Detection of characteristic gamma rays from <u>inelastic scattering</u> and <u>capture</u>
- Known detector efficiency, nuclear data, and net peak areas yields element ratios
- Interesting elements for explosives detection are: nitrogen, carbon, hydrogen, oxygen, chlorine, fluorine, a.o.

Equipment

- Detector shielding against thermal neutrons and gamma background
- Lanthanum bromide scintillation detectors $(1\frac{1}{2}" \times 1\frac{1}{2}" \text{ and } 2" \times 3")$
- Digital spectrometers: Ortec DigiBase and Xia Polaris

Shielding arrangements for LaBr₃ scintillation detectors

Experimental setup

Test sample (NH₄Cl)

Neutron generator

Gamma spectrum, PGNAA neutron capture

Result, example: element ratios

Test sample: NH_4CI , and evaluation of the mass ratios H/Cl

Method: prompt thermal activation analysis

Measured mass	Theoretical mass
ratio H/Cl	ratio H/Cl
0.10±0.03	0.11

Objective: Detection of Special Nuclear Material for Nuclear Security applications

Application:

detection of SNM in shielded containers

Physics principle:

- induce fission by epi-thermal/thermal neutrons (pulsed neutron source)
- fission signatures are the evidence for presence of SNM:
 - only fast prompt fission neutrons appear in PSD peak
 - neutron coincidences in short gates of 10-20 ns.

Technical implementation issues:

- high count rates in neutron/photon mixed fields
- fast neutron detection at high efficiency
- good neutron/photon separation necessary

Technical/scientific implementation:

- 8x 3"x3" EJ-309 liquid scintillation detectors
- signal analyzing hardware (fast digitizers)
- (online interpretation (PSD) in FPGA hardware)

Detection of triple coincidences using CBNM U_3O_8 standards <u>thermal</u> interrogation (250µs to 40000µs)

Kinds of three-fold coincidences:

(a) γγγ
 (b) γγη
 (c) γnn

(d) nnn

Example I, nuclear security:

Scale-up of experimental results to industrial size (preliminary results)

MCNP model of PUNITA setup **PUNITA simulations:** $\circ \circ \circ \circ \circ \circ \circ \circ$ To compare experiments to MCNP model we apply the following figure of merit: FOM = [thermal n-flux] x [detector n-efficiency] in order to optimize both parameters individually. С • Due to generator pulsing (100 Hz) we integrate n-flux over 10 ms period: $\Phi_{\rm th} = 224891 \, {\rm cm}^{-2}$ • As a measure of fission neutron detection efficiency we define recoil protons with $E_{kin} > 700$ keV as a neutron detection event: 00000000 $\mathcal{E}_{\rm p} = 6.07 \pm 0.30 \%$ newtron generator • graphite Research Centre scintillation detector • polyethylene

Scale-up of experimental results to industrial size (preliminary results)

Assay of Unit Load Devices (ULDs) for air cargo
Accommodate largest standard ULD: LD1 for Boeing 747-400: 234 x 153 x 163 cm, 4.90 m³
Device implemented into standard 20-foot container not shown: - conveyer belt through entire container - n-generator centered below cavity

Scale-up of experimental results to industrial size (preliminary results)

Assay device as implemented in 20-foot container (view from entrance) showing: detector positions, n-generator position

Standard ULD as applied for air cargo

Scale-up of experimental results to industrial size (preliminary results)

Geometry comparison "ULD device / PUNITA":

modera	tor volume ratio	11.9	
٠	sample cavity size ratio	31.7	
٠	detector volume ratio	21.8	
•	neutron generator	same	(1x 10 ⁸ /sec, 100 Hz pulsing)

Preliminary simulation results "ULD device / PUNITA":

thermal n-flux ratio, centre pos.	$\phi_{\text{th.ULD device}} / \phi_{\text{th.PUNITA}}$	=	0.0061 ± 0.0002
fission neutron det. efficiency	$\varepsilon_{n, ULD \text{ device }}/\varepsilon_{n, PUNITA}$	=	0.379 ± 9.94.10 ⁻⁴
FOM ratio	.,		1/436 ± 1/11065

Based on the (conservative) estimate of a detection limit in the PUNITA configuration of 0.52 g 235 U in a <u>100 second measurement</u> when using the 3-fold neutron coincidences as signature, the detection limit of the "ULD device" described above would be approximately a factor 436 higher, or <u>LOD = 228 g 235 U.</u>

Pulsed n-generator (14-MeV)

- Tailor n-spectrum with filters around target
- Induce fission with fast and epi-thermal spectrum
- Detect useful fission signatures, in particular prompt fission neutrons
- Use die-away curve (neutron self-multiplication) to confirm "presence of large fissile mass".

Verification of high explosives

- Need for moderator to acquire useful neutron capture gamma lines
- In-elastic scattering gamma lines are difficult

Thank you!

Bent Pedersen Joint Research Centre Institute for Transuranium Elements Nuclear Security Unit 21027 Ispra (VA), Italy

bent.pedersen@jrc.ec.europa.eu

30