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Abstract 

 

Neutron time correlation analysis is one of the main technical nuclear safeguards techniques used to 

verify declarations of, or to independently assay, special nuclear materials.  Quantitative information is 

generally extracted from the neutron-event pulse train, collected from moderated assemblies of 
3
He 

proportional counters, in the form of correlated count rates that are derived from event-triggered 

coincidence gates. These count rates, most commonly referred to as singles, doubles and triples rates etc., 

when extracted using shift-register autocorrelation logic, are related to the reduced factorial moments of 

the time correlated clusters of neutrons emerging from the measurement items.  Correcting these various 

rates for dead time losses has received considerable attention recently.  The dead time losses for the 

higher moments in particular, and especially for large mass (high rate and highly multiplying) items, can 

be significant.  Consequently, even in thoughtfully designed systems, accurate dead time treatments are 

needed if biased mass determinations are to be avoided.  In support of this effort, in this paper we discuss 

a new approach to experimentally estimate the effective system dead time of neutron coincidence 

counting systems.  It involves counting a random neutron source (e.g. AmLi is a good approximation to a 

source without correlated emission) and relating the second and higher moments of the neutron number 

distribution recorded in random triggered interrogation coincidence gates to the effective value of dead 

time parameter.  We develop the theoretical basis of the method and apply it to the Oak Ridge Large 

Volume Active Well Coincidence Counter using sealed AmLi radionuclide neutron sources and standard 

multiplicity shift register electronics.  The method is simple to apply compared to the predominant present 

approach which involves using a set of 
252

Cf sources of wide emission rate, it gives excellent precision in 

a conveniently short time, and it yields consistent results as a function of the order of the moment used to 

extract the dead time parameter.  This latter observation is reassuring in that it suggests the assumptions 

underpinning the theoretical analysis are fit for practical application purposes.  However, we found that 

the effective dead time parameter obtained is not constant, as might be expected for a parameter that in 

the dead time model is characteristic of the detector system, but rather, varies systematically with gate 

width.   

 

Keywords: neutron coincidence counting; multiplicity counting; dead time correction; fissile material 

assay 

  



Introduction 

 

Event triggered neutron time correlation analysis is extensively used to quantify fissioning systems [1, 2].  

Examples include the passive assay of Pu items in terms of the equivalent 
240

Pu spontaneous fission rate, 

the measurement of U items from the induced fission strength resulting from an external interrogating 

source, and the analysis of sub-critical assemblies.  In all cases the use of correlated analysis is used to 

provide more information about the measured items than gross counting alone can do – especially 

because the gross counting rate depends on non-fission processes such as (α,n) production.  An important 

aspect of neutron time correlation is how to correct the various observed rates of interest for dead time 

losses [3-5]. There are two considerations: first having a formalism that describes the behavior, and 

second, having an experimental way to determine the dead time parameter. In this work, we adopt the 

formalism (mathematical dead time model) of Hauck et al. [6], and develop a new approach to extracting 

the effective model dead time parameter under the assumptions of that model.  The concept of an 

effective dead time parameter will be shown by direct experiment to be only an approximation when 

applied to a representative measurement instrument.  The model error in the dead time parameter 

determination from the count distribution evidently far exceeds the readily achieved measurement 

precision reported.  However, this does not preclude the application of the model with suitable parameters 

to problems of practical interest.  In our proposed new approach the neutron count (number) distribution 

is measured using a time-random neutron source placed in the neutron detector cavity while sampling the 

detected-neutron pulse train a large number of times by random placement of counting gates.  The use of 

a (single) random (uncorrelated) source may be seen as an advantage, when such a source is available, 

over using a collection of 
252

Cf sources of widely different emission rates.  In our case we used AmLi 

sources which we hold as active neutron interrogation sources.  They have a long working life because the 

half-life of 
241

Am is over 400 years, and so unlike 
252

Cf, they do not require regular replacement.  The 

observed variance of the recorded neutron number distribution from a random source is expected to be 

narrower than for an ideal Poisson distribution, because of dead time losses, which introduces a degree of 

correlation between closely spaced events. Menaa et al [7] successfully exploited this idea to obtain 

experimental estimates of the effective system dead times of neutron multiplicity counters using sealed 

AmLi radionuclide sources.  The basis of their analysis technique was the theoretical result of Foglio Para 

and Bettoni [8] for the number distribution recorded in the ideal paralyzable (Type I or extending) dead 

time model for the ‘not free’ single-chain counter case.  By applying the method of Laplace transforms to 

the theoretical number distribution, an expression relating the variance,   
 , of the  -distribution to its 

mean, 〈 〉, and the ratio,  , of the dead time parameter,  , to the gate width,    can be derived.  The result 

is [7]: 
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In the small   limit (     ) we can linearize the expression to obtain: 
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We see that as   approaches zero from above then   
  approaches 〈 〉, which is the well-known result we 

would expect for a pure Poisson process. 

 

Solving the full quadratic expression,       
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  , for   we obtain the following physically 

meaningful solution: 
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Because of deadtime, the ratio   
 〈 〉⁄  is expected to be slightly less than unity for the counters of interest 

to our discussion, and so expanding the square root using the Binomial theorem we immediately see using 

the form of the solution given on the right hand side is consistent with the linearized solution given 

previously.  The other mathematical solution,      √  [
〈 〉   

 

〈 〉 
] is not physically appropriate. 

 

The estimate for the mean number of counts in the gate,   , expected in the absence of dead time losses 

may then be obtained by solving the familiar transcendental equation 〈 〉     
    , where   is Euler’s 

number, the base of the natural logarithm [9].   

 

In an earlier work to that of Menaa et al [7], Robba, Dowdy and Atwood (RDA) [10] advocated a similar 

approach to practical effective dead time parameter estimation for neutron time correlation counting.  

Their starting point was the first order derivation of the Feynman-Y excess variance statistic [2] 

influenced by dead time.  For a non-multiplying random neutron source Equation (11) of RDA [10] may 

be written as follow: 
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Substituting and re-arranging we obtain the same approximate result as before, namely: 
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Note that Equation (9) in RDA [10] should also give this result if it were not for what appears to be a 

simple sign error.   

 

More recently, a comprehensive forward-predictive theoretical development of various time correlation 

counting rates, including the distortion due to a dead time, has been published by Hauck et al [6].  The 



results are exact within the limitations of the dead time model, which assumes a single-chain detector, 

with a single exponential time constant or dieaway time, subject to a fixed paralyzable dead time period 

following each neutron detection-event.  This physical picture is simple - although the mathematical 

development quickly becomes tedious.  We may (correctly) imagine the information about the origin of a 

neutron inside the item being encoded in the frequency at which neutrons emerge from the item in 

clusters.  That is the rate at which clusters of one, two, three, four … neutrons, with a common ancestry 

(e.g. an (α,n) of spontaneous fission initiated fission chain), emerge from the item and may strike the 

detector.  These clusters, or bursts, of neutrons are then slowed down and thermalize in the detector.  Each 

thermal neutron has the same probability as the rest of the cluster of being lost or detected by the system.  

This results in both a softer detected number multiplicity distribution than emerges from the item, and the 

clusters being spread out in time according to the dieaway time of the detector.  The theoretical 

development of a dead time correction starts with this simple point-process statistical model and overlays, 

onto the average temporal behavior of potentially overlapping detected clusters, a system dead period 

after each detection interaction.  The resulting dead time correction for the various rates depends on the 

degree of correlation on the pulse train- in other words, on the dead time corrected correlated rates- 

because the dead time free correlated rates provide a mathematical basis set for representing the statistical 

properties of the neutron source term.  However, for a random neutron source the dead time model 

predictions simplify considerably because there are no sources of two, three, or higher neutrons.  With 

this in mind we can therefore adapt the theoretical results of Hauck et al, for the special case of a random 

neutron source, so as to obtain the following relations for the expected average and expected reduced 

second factorial moment of the number distribution, which permit the corresponding dead time model 

parameter to be estimated experimentally: 
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In these equations we are using the bra-ket 〈 〉 notation to denote the  -distribution expectation or 

averaged value of the enclosed quantity; in this case 
〈 (   )〉

 
 is also referred to as the reduced second 

factorial moment.  The far right hand form of the second expression follows by substituting from the first.  

   is the singles (gross or totals) rate of events that would be recorded in the absence of dead time.  It is 

the average rate at which neutrons are interacting in the detector medium.     is the width or duration of 

the time gate.  To clarify these definitions let    〈 〉   ⁄  represent the measured (singles) count rate and 

      the dead time corrected rate.  Then,       
        

 (    ) , which we recognize as the 

earlier transcendental form for paralyzable dead time and a Poisson source. 

 

Re-arranging the two relationships we obtain the following expression for  : 
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where, in order to obtain the far right hand side form, we have used the following equality of statistical 

expectation values: 
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Note the exact expression for   obtained using the theory of Hauck et al [6] agrees with the quadratic 

solution developed by Menaa et al [7] which was founded on the work of Foglio Para and Bettoni [8].  

We shall therefore adopt this result (rather than the RDA [10] approximation) in the analysis of the 

experimental data to be discussed later.   

 

The value of the dead time parameter follows from the definition of  : 

 

      

 

 

Importantly, in addition, the formalism of Hauck et al [6] readily lends itself to the derivation of 

expressions for higher-order statistics of the observed count distribution when a random neutron source is 

present.  Thus, for example, we have for the third reduced factorial moment: 
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from which we obtain an alternative expression that can also potentially be used to experimentally 

estimate a value for  , namely: 
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Extending to the fourth order reduced factorial moment we find: 
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from which we obtain: 
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These cases are sufficient to establish the general pattern by induction.  Out of interest, and because it can 

be useful in checking practical implementations of these results, we also see that to first order, that is in 

the small dead time limit, the corresponding dead time correction factors for the first few reduced 

factorial moments for a random neutron source scale as:  (   ), (    ), (    ), (     ), (  

   ), etc.  When the pulse train is only weakly correlated (low detector efficiency and short fission chain 

items) and the dead time correction is small, these simple results are useful approximations and we have 

used them in sensitivity and uncertainty analysis for multiplicity counting – although they must be treated 

with care and are not recommended for practical use outside of this very narrow setting. 

 

 

 

Experimental Demonstration 

 

In order to study how the proposed new approach to experimentally determining the effective system 

dead time from the recorded number distribution works in practice, data were collected using the Oak 

Ridge National Laboratory’s Large Volume Active Well Coincidence Counter (ORNL LV-AWCC).  The 

LV-AWCC is a thermal-well counter similar in design to the standard AWCC (Canberra Industries Inc., 

model JCC-51 [11]) but it has been scaled to a larger cavity diameter and it uses a higher 
3
He fill 

pressure.  There are 48 
3
He-filled cylindrical proportional counters, of 1 inch external diameter at a partial 

fill pressure of 4.5 atm., arranged in two concentric rings about an 11 inch diameter, 15 inch tall assay 

measurement cavity.  For these measurements the Cd-liner was in place and the largest cavity 

configuration was used.  The LV-AWCC is a general purpose instrument which may be used to assay 

uranium by inducing fission by placing an AmLi source in polyethylene end plugs.  But routinely the 

system is also used with graphite end-plugs (without the AmLi sources) to perform passive assay of 

spontaneously fissioning items including multiplicity (singles, doubles, triples) mode.  In that sense it is a 

representative of a general purpose counter with a wide range of measurement applications. 

The proportional counters are hard wired into eight groups of six with each group being serviced by a 

separate Canberra JAB-01 Amptek A-111 based amplifier/discriminator unit.  In this way, the inner ring 

of proportional counters is catered for by four amplifiers, as too is the outer ring.  The 8 streams of 52 ns 

wide TTL logic pulses are electronically summed via a multi-input derandomizer circuit and fed as a 

single pulse train into the shift register.  Leading edge pulses arriving close in time at the input of the 

derandomizer remain distinct because, in such cases, the queue of events are placed on the output pulse 

train on the next free clock cycle.  The shift register also has a 16 pulse deep input buffer (which should 

be redundant given the action of the derandomizer) and so is not expected to introduce any further dead 

time loss.  A photograph of the system is shown in Figure 1.  To represent a random neutron source, a 

pair of AmLi neutron sources, normally located in the high-density polyethylene end-plugs for active 

interrogation, were positioned side-by-side inside the measurement cavity on either side of the cylindrical 



axis. These sources are of type Gammatron model AN-HP, Serial numbers N-458 and N-459, each 

containing 1.20 Ci (± 1%) of 
241

Am, and having a measured neutron emission rate of 4.9x10
4
 n.s

-1
 (± 3 

%))  Each neutron source is doubly encapsulated in stainless steel with external dimensions of roughly 25 

mm diameter by 35 mm long.  Each is additionally shielded by an external tungsten ‘pot’ with a minimum 

wall thickness of >2.5 mm to reduce the dose from the 
241

Am 60 keV gamma-ray emission when handling 

the sources.   

 

 

 
 

Figure 1.  A photograph of the ORNL LV-AWCC.  The top-plug is shown removed and is resting on the 

electronics enclosure. 

 

 

Data was acquired using a hand-held multiplicity shift register [12].  Standard operational settings were 

used, in particular the high-voltage of 1700 V, is slightly above the knee of the coincidence (doubles) rate 

plateau measured using a 
252

Cf reference source, and an event-triggered-gate predelay [1] of 4.5 μs was 

used.  The long delay [1] is fixed in the electronics hardware at 4096 μs.  With a coincidence gate width 

of 64 μs, the ambient (room) singles, doubles, and triples background rates were approximately 8.32 

counts per second (cps), 0.123 doubles per second (dps), and 0.022 triples per second (tps), respectively.  

No background subtraction is needed, however, because the singles rate simply contributes a small 

additional random contribution to the AmLi rate and the ambient correlated rates are negligible compared 

to the uncertainties.  For reference, the count rate with the AmLi sources present is about 37 kcps. 

 

The shift register data is in the form of two histograms: the (R+A)-histogram and the A-histogram [1,2].  

The (R+A)-histogram is count-distribution-generated by opening a gate after a predelay period for each 

incoming event.  The A-histogram is the count-distribution-generated by opening a gate after the long 



delay.  Provided the quiescent behavior of the detector system is reestablished in a time shorter than the 

predelay following each event, then the two number distributions should be equivalent within their 

combined statistical sampling uncertainties.  We can test for this by forming the bias factor defined by: 
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  ]    

 

where 〈 〉    and 〈 〉  are the average number of counts per gate in the (R+A)- and A-histograms 

respectively.   

 

Measurements were performed as a function of gate width for settings of 2, 4, 8, 16, 32, 64, 128 and 256 

μs.  For each gate width setting, data were acquired for 24 counting periods each of 300 sec duration.  

This allowed a statistical analysis to be performed on the sequence of 24 cycles for the assignment of 

experimental precision uncertainty in the dead time parameter estimates.  For each run, the (R+A)- and A-

histogram data were analyzed separately, checked for bias and self-consistency, and then combined into a 

single 48 cycle data set.   

 

 

Results 

 

The dead time parameter was determined using this analysis with the neutron count distribution of each of 

these 24 cycles in the (R+A) and A gates, in addition to the combined gate. Table 1 reports the values of 

this analysis.  

 

Table 1. Results of dead time analysis for (R+A)- and A-gates, including bias 

Tg Bias 1-σ δ(R+A) 1-σ δ(A) 1-σ δ(Combined) 1-σ δ(R+A)/δA 

(μs) (%) (%) (ns) (%) (ns) (%) (ns) (%)  

2 
 

-0.053 0.038 91.5 1.7 93.2 1.6 92.3 1.2 0.982 

4 0.021 0.022 109.4 1.1 105.8 1.3 107.6 0.9 1.034 

8 0.003 0.016 110.9 1.4 110.0 1.2 110.5 0.9 1.008 

16 0.010 0.011 116.5 1.2 116.6 1.4 116.6 0.9 0.999 

32 0.0096 0.0086 116.5 1.3 115.6 1.5 116.1 1.0 1.008 

64 0.0131 0.0049 114.7 1.2 115.2 1.4 114.9 0.9 0.996 

128 0.0152 0.0039 113.7 2.6 114.7 2.6 114.2 1.9 0.991 

256 0.0029 0.0036 106.7 3.1 109.6 3.9 108.2 2.5 0.974 

 

There seems to be a persistent small positive bias at the 0.01 % level (Figure 2) – possibly due to some 

unknown non-ideal behavior; perhaps a small fraction of events exhibit double pulsing – which would 

require investigation using equipment not available during the campaign.  More likely there is a small 

correlated neutron contribution from the source due to induced fissions in 
241

Am [13]. 

 



 
Figure 2. The bias percent in the (R+A)- and A-gates as a function of gate width. 

 

However, the effective dead time parameter estimated from the two histograms are in agreement within 

counting precision and so we present the plot of the combined results (Figure 3).  Statistical uncertainties 

are quoted at the 1-σ level (68.3 % confidence interval).   

 

 

Shown in Fig.4 is the combined ((R+A)- and A-histogram) dead time parameter extracted using the two 

alternative expressions which make use of the third and fourth factorial moments of the count distribution, 

respectively.  Despite the large initial uncertainty in the 4
th
 factorial moment results, all three estimates of 

the dead time are in good accord, which suggests that the model assumptions and approximations are 

appropriate.   
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Figure 3. The dead time parameter determined from the combined (R+A)- and A-histograms of the 

neutron count distribution as a function of gate width.  
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Figure 4. Top: Dead time parameter using the 3

rd
 factorial moment of the combined (R+A)- and A- 

neutron count distribution. Bottom:  Dead time parameter using the 4
th
 factorial moment. 
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Conclusions and Discussion 

 

It is understood that the recorded number distribution can be decomposed into its reduced factorial 

moments which provides an alternative unique description of its statistical properties.  In this work, for 

the first time, we use the higher order moments to experimentally explore the effective system dead time.  

A brief review of the expression used to experimentally estimate effective system dead time from count 

distributions with a random neutron source, for use in characterizing neutron correlation counters, has 

been given.  Within the theoretical framework of the one-channel paralyzable dead time model, a simple 

exact expression for the dead time exists in terms of the mean and variance of the count distribution and 

the width of the counting gate used.  We experimentally studied the variation of the dead time parameter 

estimated as a function of gate width for the ORNL LV-AWCC using AmLi sources.   

 

One might expect the underlying effective system dead time parameter to be a system constant, 

independent of gate width, characteristic only of the distribution of signal widths formed in the 
3
He 

proportional counters.  However, this is not what we found in the case of the LV-AWCC.  Based on the 

second factorial over mean squared expression, the dead time peaks at a gate width of about 16 μs.  The 

values at 2 μs and 256 μs are 79 % and 93 % of the 16 μs value, respectively, with the drop on the wide 

gate side being approximately linear.  These variations are large in relation to the measurement precision 

estimated by statistical analysis and so exhibit some genuine trend.  Using a dead time parameter specific 

to the gate width is not a practical obstacle being readily accommodated in the current generation of dead 

time correction formulations [14, 15].   

 

An almost identical picture is obtained when using the third factorial moment over mean cubed 

expression.  The experimental uncertainties are somewhat larger (although generally less than by a factor 

of two) but the overall trend seen using the second moment expressions is closely replicated. When using 

the fourth factorial moment expression, the uncertainties increase again.  For the 2 μs data, the uncertainty 

is significantly larger; but this is not surprising because the count distribution only extends to    , and 

then with a low probability, renders the higher moment calculation less reliable.  Overall, however, the 

estimates of the effective system dead time obtained remain in excellent agreement, within the estimated 

precisions, of the other two approaches. 

 

It is not possible from the type of experiment performed here to determine the reason for the observed 

trend of   with   , but we can speculate several potential reasons as to why the dead time model may not 

exactly match with reality.  Notably, the dead time model assumes a single counting chain and a fixed 

dead time of the paralyzable type.  In practice, the system comprises 8 counting chains and the dead time 

of each channel follows a distribution corresponding to the variation in time the 
3
He proportional counter 

signals spend above threshold.  Also, the finite width of the TTL logic pulses and the nature of the pulse 

train summing process introduces an additional dead time influence which might make the overall system 

perform in a paralyzable dominant, but not wholly paralyzable, way.  And finally, there may be other 

non-ideal detector behaviors such as double pulsing and baseline shifts in the amplifiers following each 

event.  It is also important to recall that the theory assumes that the dead time is less than the gate width.  

In the short gate width regime (a few μs) this may not be a wholly valid assumption for the individual 

channels of the LV-AWCC; since the overall pulse train is a sum of 8 such channels, it seems reasonable 

to anticipate some deviation from the simplified ideal behavior in this extreme.  On the other hand, it is 



reassuring to find that the dead time parameter extracted using the three different expressions presented 

paint the same general picture.  This suggests that the results are robust and self-consistent at the 

pragmatic working level. 

 

To illustrate just one way in which the actual LV-AWCC differs from the mathematical model being 

used, recall that the measured system count rate is the sum of 8 channels:                  .  

If channels 1-4 are those of the inner ring and channels 5-8 those of the outer ring then we can write, for 

the average dead time free (or dead time corrected) behavior:      (
    ⁄

  ⁄

  

 
)   (

    ⁄

  ⁄

  

 
), where   , 

  , and          are the inner-ring, outer-ring and total-system detection efficiencies, respectively.  

Because    and    are not equal, the preampliers in the inner and outer rings are not equally loaded, and 

this has a consequence for the overall system dead time behavior as we shall now show.  If each channel 

is subject to paralyzable dead time,   , then for a random neutron source we would expect:     

  [(
  

  
)    (  

  

  

  

 
  )  (

  

  
)    (  

  

  

  

 
  )].  Only when    and    are equal does this expression 

simplify to the exponential form of the single channel model:          ( 
  

 
  ).  For all other cases 

we see that what emerges in the practical setting is an effective system dead time that partially 

compensates for the model mismatch.  In the present example, in the case of singles counting in the low 

deadtime correction limit, we see by expansion and comparison of terms that an effective system dead 

time is:     [(    ⁄ )  (    ⁄ ) ]
  

 
. 

 

Throughout this paper we have emphasized that the analytical dead time correction models are applied 

with effective dead time parameters.  By using a simple model and effective parameters, adequate 

corrections can often be made provided the corrections are modest.  One way of minimizing dead time in 

future systems is to pay special attention to the proportional counter/amplifier combination and use one 

amplifier per proportional counter.  This shifts the upper dynamic range and for some applications the 

benefit justifies the additional cost.  But there will always be challenge cases where improved dead time 

treatment is also needed.  At the present time all dead time correction approaches used in applied neutron 

correlation counting are either empirical or are based on simple one-channel models and use effective 

dead time model parameters. 

 

The value of the present work is that the concept of an effective dead time parameter has been shown by 

direct experiment to be only an approximation when applied to a representative measurement instrument.  

The potential systematic error in the dead time parameter determination from the count distribution 

evidently far exceeds the readily achieved measurement precision reported.  But for modest rates, 

acceptable dead time correction factors are still anticipated and are suitable for practical applications such 

as international nuclear safeguards.  We caution against drawing overly general or sweeping conclusions 

from the results reported here for a particular instrument, when the main purpose was to introduce and 

demonstrate a new approach to dead time estimation for practical applications.  However, we provide an 

additional data set and remarks in the Annex which further indicates that dead time behaviors in real 

systems are more subtle than treated when scrutinized in detail.  To explore the underlying behavior in 

greater detail, we plan to investigate the time domain using list mode data acquisition and to explore more 

sophisticated dead time models using Monte Carlo simulation of the entire counting system. 
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ANNEX 

Measurements on the LV-AWCC suggested that the effective dead time parameter varies in a non-

monotonic way with gate width.  We found this trend to be repeatable and so it cannot be discounted as a 

consequence of counting precision or chance.  Because it is usual practice to operate neutron correlation 

counters with fixed predelay and coincidence gate settings, the effective dead time is usually only 

determined at operating condition.  We have looked at several counters of commonly used design and 

found systematic behaviors – i.e. the effective system dead time is not constant.  Pending a more complete 

review than can be offered here of our findings, we present the results for just one additional example: a 

variant of the Type-I  Neutron Coincidence Collar (UNCL-I) [16] in the four slab configuration suitable 

for the verification of fresh mixed U/Pu oxide (MOX) fuel assemblies by passive neutron coincidence 

counting.  Each slab contains six 
3
He proportional counters (4 atm partial pressure) and one Amptek 111-

A JAB-01 amplifier/discriminator.  The 50 ns TTL logic-pulse outputs from each slab is summed in a 

simple OR daisy chain circuit. 

 

Dead time data were taken using the four similar AmLi sources distributed at the center of the mid-plane 

of the measurement cavity.  All four channels were connected to a PTR-32HV [17] list mode data 

acquisition platform, but only the results for the pulse train from the summed detector response will be 

presented here.  As previously noted, list mode data acquisition is an excellent option to perform this type 

of analysis as a single pulse train can be reanalyzed in post-analysis for various predelay and gate width 

values without having to retake a measurement.  But, because only a single data set (file of intervals 

between recorded events) is used, the numerical results of dead time will of be course correlated (i.e. there 

will be a non-zero covariance between them).  We used the INCC export function within the evaluation 

menu in PTR-32HV to create files in a format that is commonly used in the international safeguards 

community. Twenty-four cycles of 300 seconds were acquired. The overall counting rate was 

approximately 45,000 cps nearly evenly distributed between the four amplifiers. The standard 4.5 μs 

predelay and 64 μs gate width timing windows were selected at the time of acquisition and the files were 

analyzed offline for a range of gates. The resulting dead times and biases are reported in the Table A1. 

Plots of the key results are also provided (Figures A1-A4).   

 

For short gate widths, less than about 16 μs, we see some evidence of significant bias, suggesting that the 

standard (recommended) 4.5 μs predelay does not completely allow the system to recover following an 

event.  We again find good agreement between the dead time estimates derived from the second, third and 

fourth reduced factorial moments.  Below about 16 μs, the dead time values obtained begin to trend with 

gate width to a degree which is significant compared with the estimated counting precision.  Note we are 

presenting the dead time results for the combined (R+A)- and A- histograms.  In light of the apparent bias 

at short gate widths, one might suppose that the dead time values at short gates extracted solely from the 

(R+A)-number distribution would be strongly different that that obtained using only the A-distribution.  

However, this is not the case.  Both results exhibit similar trends as a function of gate width even though 

the predelay for the A-number distribution is of the order of 1000 times longer.  

 



 

Table A1. Results of dead time analysis for (R+A)- and A-gates, including bias 

Tg Bias 1-σ δ(R+A) 1-σ δ(A) 1-σ δ(Combined) 1-σ δ(R+A)/δA 

(μs) (%) (%) (ns) (%) (ns) (%) (ns) (%)  

2 
 

0.044 0.038 142.8 1.5 137.1 1.4 140.0 1.1 1.04 

4 0.025 0.020 155.9 1.4 153.2 1.8 154.6 1.1 1.02 

8 0.018 0.018 160.8 1.5 158.8 1.7 159.8 1.1 1.01 

16 0.0031 0.012 163.0 1.6 162.2 1.5 162.6 1.1 1.01 

32 0.0018 0.0073 162.9 1.4 162.6 1.8 162.8 1.1 1.00 

64 0.0028 0.0047 164.8 2.1 163.5 2.2 164.1 1.5 1.01 

128 0.0040 0.0034 163.9 2.7 162.9 2.8 163.4 1.9 1.01 

256 0.0014 0.0022 165.2 2.8 165.2 3.3 165.2 2.2 1.00 

 

 

 

 

Figure A1. The bias percent in the (R+A)- and A-gates as a function of gate width. 
 

 

 



 

Figure A2. The dead time parameter determined using the 2
nd

 factorial moment of  the combined 

(R+A)- and A-histograms of the neutron count distribution as a function of gate width 
 

 

 

Figure A3. The dead time parameter using the 3
rd

 factorial moment of the combined (R+A)- and A- 

neutron count distribution. 
 

 



 

Figure A4. The dead time parameter using the 4
th
 factorial moment of the combined (R+A)- and A- 

neutron count distribution. 
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