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Abstract 

 

Neutron multiplicity counting using shift-register calculus is an established technique in the 

science of international nuclear safeguards for the identification, verification, and assay of 

special nuclear materials.  Typically passive counting is used for Pu and mixed Pu-U items and 

active methods are used for U materials.  Three measured counting rates, singles, doubles and 

triples are measured and, in combination with a simple analytical point-model, are used to 

calculate characteristics of the measurement item in terms of known detector and nuclear 

parameters.  However, the measurement problem usually involves more than three quantities of 

interest, but even in cases where the next higher order count rate, quads, is statistically viable, it 

is not quantitatively applied because corrections for dead time losses are currently not available 

in the predominant analysis paradigm.  In this work we overcome this limitation by extending the 

commonly used dead time correction method, developed by Dytlewski, to quads.  We also give 

results for pents, which may be of interest for certain special investigations.  Extension to still 

higher orders, may be accomplished by inspection based on the sequence presented.  We discuss 

the foundations of the Dytlewski method, give limiting cases, and highlight the opportunities and 

implications that these new results expose.  In particular there exist a number of ways in which 

the new results may be combined with other approaches to extract the correlated rates, and this 

leads to various practical implementations. 

Keywords: neutron coincidence counting; neutron multiplicity counting; dead time corrections. 
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Introduction 

 

Time correlation analysis (TCA) of detected-neutron pulse trains using various time gating 

methods is the basis of fission rate determination used for the detection, verification and assay of 

certain special nuclear materials (SNMs).  For quantitative analysis three things are needed: a 

way to extract average correlation counting rates from the registered pulse train, an 

understanding of how to either include or correct for rate loss effects, and a way to interpret the 

rates in terms of the physical properties of interest of the item.  In the following we shall address 

all three of these aspects with a focus on a scheme for making practical dead time corrections. 

How to extract multiplet information from the pulse train using either Signal Trigger Inspection 

(STI) histograms, Random Trigger Inspection (RTI) histograms, or MIXed coincidence gating 

expressions that make use of the difference histogram is summarized in [1-3].  Of these three 

gating schemes the MIXed has been b y  f a r  the mostly widely used in multiplicity shift 

register counting for the past three decades in the field of applied nuclear safeguards.  In 

multiplicity counting using shift register logic it is traditional to use MIXed expressions up to 

triples.  Here we show explicitly how to use all three gating approaches to extract dead time 

corrected (DTC) correlated rates up to fifth order.  Extension to higher order rates is also 

made clear through the recent extension of the point-model equations up to any order [7,36].  

Preliminary expressions for the DTC in the MIXed scheme have already been reported [14,15] 

but not the derivation or related discussion.  Because there is formal equivalence between the 

information that can be extracted from the pulse train using the various autocorrelation analysis 

methods, STI, RTI, or MIXed, one is free to use which ever scheme gives the best statistical 

precision and l eas t  dead time bias.  We note, for example, that there is a close connection 
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between the RTI approach for extracting doubles and the Feynman-Y statistic [3,11].  When 

using random (with respect to the pulse train) triggering fast accidental sampling (FAS) [4] at a 

high clock rate (greater than the incident recorded event rate), which leads to overlapping gates 

(distinct to the original Feynman sampling which uses contiguous gates; although the expectation 

values are the same) is always preferred on grounds of precision and is to be recommended when 

room background is not changing. 

Widely used expressions for dead time corrected (DTC) singles, doubles and triples rates from 

multiplicity shift register (MSR) based passive neutron multiplicity counting (PNMC) are 

available in [5-6].  We refer to this approach as the Dytlewski dead time correction method.  

However, in practice, in applying the generic Dytlewski method, there are variants which differ 

in detail.  We shall discuss some of these variants so that ambiguity of use might be avoided.  

We explain the assumptions behind Dytlewski’s method and also extend the discussion provided 

by Dytlewski in several other important ways, in particular, to higher order rates, beyond triples.  

In particular we give explicit expressions for how to compute the dead time correction 

coefficients needed to extract correlated rates up to pents. 

 

Dytlewski’s Original Dead Time Correction Treatment 

 

In traditional signal (neutron event) triggered neutron multiplicity analysis the number of 

occurrences of multiplicity   in the signal-triggered Reals plus Accidentals (R+A) and randomly 

triggered or Accidentals (A) inspection intervals are recorded [3].  Denoting these two 

histograms by    and    and the data acquisition time by  , the apparent or measured singles,   , 

doubles,   , and triples,   , rates are calculated as follows [5-6]: 
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These two expressions for the measured singles rate follow from the fact that the singles rate is 

also the time averaged trigger rate which is the rate of inspection interval (coincidence gate) 

openings.  These equations therefore also embody the expectation that, for internally consistent 

(conforming to the mathematical assumptions) data, the number of times each of the two 

coincidence intervals are inspected during the data acquisition period is equal to the total number 

of neutron events electronically recorded by the MSR.  A data consistency check is performed to 

ensure that this is the case, within one or two  recorded events, consistent with the internal timing 

of the multiplicity shift register modules, and provided this check is satisfied, the singles rate is 

then conventionally calculated from the    histogram.  Corresponding expressions for the 

doubles and triples are: 
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where         is the signal triggered difference-histogram, and    is the measured accidentals 

coincidence rate for doubles counting, derived from the random triggered A-histogram, and is 

given by: 
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Because the RTI histogram is conventionally being sampled at the incoming event rate   , and 

because on the average one would expect to find the number of pulses in the gate to be equal to 

     , where    is the duration of the gate, we may also calculate the expectation value of the 

accidental coincidence doubles rate from: 

 

                      (5) 

 

For conforming data we expect    and    to be numerically equal within the limits of counting 

precision.  Typically, a software check is made to confirm this is true.  Failure of this test is taken 

as an indication of either a fault in the data acquisition system, or more usually, an indication that 

the counting rate is not steady throughout the assay period, for example because neutron emitting 

sources were in movement near to the instrument during data collection, or because the natural 

background changed.  Provided one has an independent means for believing the experimental 

conditions are stable (the quiescent conditions of the measurement such as room background are 

unchanging), then    is usually the more precise predictor of the accidentals rate.  It is therefore 

tempting, and potentially beneficial, to adopt the calculated accidentals rate where ever possible.  

Assuming    and    to be numerically interchangeable, therefore, we can write a variation to 

the Dytlewski recipe for computing the measured triples rate from the histogram data as follows: 
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For numerical work this should give similar (if not exactly) the same results, but the important 

thing to note is that the results obtained using this expression, which differs from that given by 

Dytlewski [see following chapters], should be of comparable or better quality.  That is to say, 

any numerical differences should be inconsequential in the context of the statistical power of the 

experimental data and therefore unimportant from a practical standpoint (although from a purely 

numerical and code implementation perspective any differences will be genuine). 

When used to test for variation in the ambient background during the assay, agreement between 

   and   , although only as good as the combined precision, can non-the-less be quite sensitive, 

because    tracks  with the incoming pulse train commensurate with the time resolution 

governed by the action of the shift-register.  On the other hand    is calculated using the average 

singles counting rate formed over the entire duration of the assay and so can not follow a 

changing rate.  Thus any difference between    and    provides strong evidence that the rate 

was not constant. 

In place of    one may also adopt the accidentals rate    derived from FAS, as alluded to 

earlier.  This is derived from the accidentals histogram formed by sampling the pulse train at a 

high clock frequency (e.g. at 50 MHz, an order of magnitude greater than the highest anticipated 

neutron count rate).  The high sampling rate ensures that the expectation values of moments 

calculated from the histogram are obtained with a precision which is limited only by the inherent 

information content present on the pulse train.  FAS also tracks any changes in the counting rate 

in near real time according to the workings of the shift register and so comparing    with    is 

a futile exercise in this case, because the self-consistency check will never fail.  But comparing 
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   with    is a valid test.  If this test passes the added benefit of using FAS is that the accidental 

histogram can be used to obtain more precise results that the traditional event triggered scheme 

for all orders of correlated rate – not just doubles.  The only change to the algorithm is trivial, 

being one of accidental histogram normalization [1].  The formulation is then executed in terms 

of the histograms expressed as relative frequency distributions (see Appendix I). 

 

According to the work of Dytlewski and co-workers [5-6], under certain simplifying assumptions 

[8], which are discussed in the Assumptions Section, the corresponding dead time corrected 

doubles and triples, rates   , and   , may be calculated from the multiplicity histograms as 

follows, in terms of an effective fixed-value extending dead time,  , per event, for the system: 
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The    and    factors may be thought of as dead time corrected versions of the reduced factorial 

moment weight factors.  They are functions of the dead time parameter,  , [5] and are dependent 

on the assumptions of the particular dead time model assumed [5,8], as well as on the operational 

gate width setting.  Prescriptions for computing them are given in [8],  in the limit          

and    
      

 
 such that the dead time corrected expressions collapse to the previously stated 

dead time free expressions.  Here     is the trigger rate (or singles rate) dead time correction.  

Expressions for the    and    factors were given by Dytlewski in [5].  We discuss them in greater 

detail in Appendix II. The concept of a fixed extending dead time, adopted by Dytlweski, is an 
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idealization in practice where a distribution of values is more realistic.  Therefore, when applying 

Dytlewski DTC method, there is an additional assumption that an “effective” DT value is 

adequate over the dynamic range of interest and degree of correlation on the pulse train. 

 

Dylewski does not, however, address the singles rate loss correction explicitly within the 

framework of the specific dead time model he applies.  Instead he assumes, without making any 

justification in reference to the model, a simple first order form, namely: 

                   (9) 

 

Equations (9), (7) and (8) are the basis of the original Dytlewski prescription for calculating dead 

time corrected singles, doubles and triples rates from multiplicity shift register algorithms.  Later 

a self-consistent DTC for singles was developed by Croft et al [10]. 

 

Dytlewski’s Dead Time Model Assumptions 

 

Dytlewski claims that exact dead time correction formulae are derived for the first and second 

factorial moments of the measured multiplicity distribution.  It is important to keep in mind 

however that his results are based on several important assumptions [5] that deserve discussion: 

 

1. The detector system is assumed to behave in accordance with the ideal one-channel 

paralyzable dead time model with a fixed dead time (DT) parameter, d.  In this 

mathematical model each neutron detected prevents another from being registered for a 

time period  .  If another neutron does interact in the sensitive detector volume within the 
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dead period then, it is not counted, but extends the dead time by a further period  .  In 

reality, however, the DT per pulse may vary depending on details of the signal formation 

process and the system may comprise multiple elements.  The prevalent systems used for 

international safeguards today are multi-channel devices comprising several groups of 

3
He filled proportional counters, with each group connected to an amplifier/discriminator, 

and the (finite width) logic pulses from each amplifier/discriminator being electronically 

summed to create a single pulse train.  The summation may be direct or through a multi-

input derandomizer board in which events are read into a buffer to avoid pile up.  Further, 

the effective dead time per interaction depends on the point of creation and orientation of 

the proton and triton reaction products with respect to the anode wire.   

2. The item being measured is a steady state (on the average) emitter. That is to say, over 

the period of observation, we are not concerned with appreciable radioactive decay, or 

pulsed interrogation, or rotation of an item inside a measurement cavity etc., so that the 

average properties of the pulse train is constant in time. 

3. The dead time is small compared to the predelay and much smaller that the gate width, 

used in the shift register analysis; the shift register analysis being one form of time 

correlation analysis. 

4. Dytlewski makes use of the earlier result of Vincent [8] for the expression of        the 

probability that   dead time losses occur in a group of   true events.  The expression for 

       are based on the assumption that a homogeneous (random) Poission counting 

process is at work over the duration of coincidence gate intervals,   .  This is a 

simplification because it does not account for the time correlation that exists between 

events originating from a common fission chain and which interact as a cluster spread out 
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in time commensurate with the lifetime of neutrons in the moderated detector assembly.  

In principle this limitation can be overcome by formulating the dead time affected 

detection process within the frame work of the prompt induced-fission point neutron 

model using a generalized homogeneous Poisson distribution [16-18].  DTC 

implementations based on these formalisms is not currently used by the safeguards 

community, for example, it is not available in the predominantly used INCC software [9] 

adopted for use by the International Atomic Energy Agency (IAEA).  An implicit 

consequence of Dytlewski’s use of Vincent’s        expressions is that the DTC’s 

applied to both the (R+A)- and A-histograms, and hence also the difference histogram 

R=[(R+A)-A], are the same.  In reality one expects the dead time losses in the (R+A)- 

gate to be higher because it is opened close in time to the triggering event meaning that 

there is a greater chance of there being a correlated events early in the (R+A)-gates, and 

therefore violating the assumption that the true arrival time of events within the gate is 

random with a constant probability density.  Another consequence of this assumption is 

that, within the Dytlewski framework, there is no mention of the system die-away time 

(the 1/e-time response of neutron detector) only of the dead time and the gate width.  In 

practice the gate width is usually chosen to be commensurate (within a factor of two in 

either direction) with the die-away time in order to achieve near optimal counting 

precision.  Thus in practice the gate width is usually indicative of the die-away time of 

the system. 

5. The        expressions of Vincent [8] assume that the coincident gate is free when it is 

opened.  In other words it is assumed that the gate is not blocked by the dead time from a 

previous event, or sequence of events, at the start of the inspection.  Because of this 
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assumption         , i.e. at least one event (the first event) is always detected from 

the group, even if all the rest are lost to dead time [see Appendix II]. 

6. It is assumed that the highest populated histogram bin with index      corresponds to 

the largest true value of the group size   present.  There is no way of experimentally 

knowing if the highest recorded event was actually due to an even higher multiplicity 

event that suffered DT losses or not.  From a pragmatic perspective, however, and 

because of the steep drop of the histogram occupancy with n, this assumption seems 

reasonable. 

7. Dytlewski’s   and   coefficients, which appear in the expressions for the first and second 

factorial moments, contain terms involving               where        is the 

ratio of the DT to the gate width and   is the bin number,            .  To be defined 

            and when     large, and   is finite to avoid the coefficients getting 

excessively large, such that a single high multiplicity outlier can grossly distort the 

measured rate, ideally one would prefer             .  Because the Dytlewski 

DTC method is approximate, resting on the assumption of random pulse arrival across the 

gate, this condition is also necessary to limit the DT corrections to “modest values”, 

where an approximate treatment likely to remain acceptable in terms of providing a 

correction which is fit for the intended purpose (and which must be judged 

experimentally).  This provides a driver for minimizing detector system dead time at the 

design stage, for example by distributing the efficiency through many 

amplifier/discriminator units and summing the pulse train going into the high-speed MSR 

using a derandomizer circuit, particularly when systems of low die-away are involved 
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and the product of the mean number of counts recorded in a gate with the dead time is 

significant compared to unity (i.e. is not <<0). 

8. The rate loss correction to the trigger rate can be approximated in an empirical ad hoc 

way.  This assumption is required because the original Dytlewski scheme does not 

explicitly consider the trigger (singles rate) dead time correction in terms of the model he 

develops.  A self-consistent singles DTC was only developed subsequently [10] by our 

group.  It should be noted however that the self-consistent Dytlewski-Croft singles DTC 

scheme does not reproduce the well-known analytical result for a random neutron source, 

(because of the assumption of a flat arrival distribution across the gate) although it is a 

close approximation for all practical purposes.  The same can be said of the original ad 

hoc treatment of Dytlewski. 

 

 

Variations in how Dytlewski’s Dead Time Correction Might be Applied in Practice 

 

In practice, the application of the basic Dytlewski DTC method lends itself to multiple 

reasonable variations.  We identify some of these here.  Our intention is simply to note that when 

it comes to implementing the basic concept different workers may take slightly different 

approaches and these can give rise to slightly different numerical performance.  It is therefore 

important when reporting results which may be being used by others to benchmark calculations 

or to validate software to be clear on exactly what equations are being applied, even though the 

different choices may all be acceptable from a practical applications perspective. 
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1. In place of       the result for a random Poisson source       is used instead for the 

trigger rate correction factor     

2. Comparison of (8) and (3) implies that the dead time corrected Accidentals rate is given 

by      
          

 

 
    

 
    

 

        
 

 
        

 
    which requires for 

internal consistency of the theory,     
 

     
 
      
 
   

   
 
   

 
      
 
   

     
 
   

.  These are the Croft-

Dytlewski equations [10].  For conforming data, that is for data which passes the 

calculated equals the measured Accidentals test, either form may be used.  For simulated 

pulse-train data subject to end effect errors (because equilibrium does not exist in the 

modelling space), the second of the two alternatives is more immune to propagating 

residual bias.  The form of the Croft-Dytlewski Singles rate DTC factor is perhaps more 

obvious to understand when one recognizes that the average measured Singles rate may 

also be obtained from the expectation value of the mean number of counts per unit time 

observed in the A-gate.  That is    
   

  
 

 

  
   

  

   
 
   

  
   , where     denotes the mean 

value of   formed over the normalized experimental frequency distribution 
  

   
 
   

.  This is 

the form we’d use with FAS. By extension    
    

  
, which leads to the result quoted for 

the Singles dead time correction, namely 

                         
 
        

 
    . 

 

3. For 
252

Cf  one would expect, for a given detector, the rate ratios formed from background 

corrected rates,        and       to be constant and characteristic of the 
252

Cf  fissioning 

system.  In an entirely arbitrary attempt to improve matters some implementations have 

provisions to implement a Dytlewski correction with greater flexibility factors of the 
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form            applied to the expression for the corrected Doubles rate of the 

Dytlewski expressions and of the form            applied to the Triples expression [19].  

Alternatively the chosen forms are of the type          and         , respectively, .  

This introduces two additional parameters.  A common constraint is to set       which 

seems to be a “good choice” based on practical experience and also has the advantage of 

reducing the number of additional parameters to be determined by one.  However, there is 

no theoretical basis for these additional factors and many expert practitioners (including 

us) recommend setting        .  Furthermore, just because one can improve the 

quality of residuals to       and       data for a set of 
252

Cf calibration data has not 

been shown, to our knowledge, to improve the quality of  DTCs of  multiplying items of 

interest.  This is in fact a difficult thing to do because for real Pu items the true rates are 

unknown. It would be interesting to exam such questions using fruitful Monte Carlo 

modelling. 

 

4. Multiplicity shift register data acquisition modules often have hardware/firmware 

capability to acquire traditional Neutron Coincidence Counting (NCC) rates directly.  The 

Totals and Reals rates being analogous to Singles and Doubles, but derived from 

hardware logic and not the histograms.  Furthermore depending on what is known about 

the item and or depending on the precision obtained on the Triples rate, perhaps only the 

Singles and Doubles will be used in the analysis subsequently selected, or perhaps a 

Doubles only calibration will be chosen.  In such cases there is an established tradition 

for how DTCs are made.  The most commonly used empirical approach is as follows:  

                          with                        ,   where   
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and   are empirical constant determined during system characterization.  In terms of an 

effective dead time parameter, for a pulse train which is not highly correlated, these 

approximations may be approximated by [11]:                            with 

                           .  The expression for Singles gives the correct 

limiting behavior for a purely random pulse train which is                  and 

which has already been given as an alternative approximation for          .  Yet 

another option is to use corrections of the form                  with       

          , where   and   are referred to as the singles and doubles dead time 

coefficients respectively and are treated as empirical constants [12].  Normally these are 

determined conveniently using the twin 
252

Cf-source method (although this usually is no 

more than a two rate method).  The ratio     is not constrained but is allowed to be 

determined freely by the data.  Although the ratio is often numerically close to  , itcan 

differ from this theoretical value by a statistically significant amount – perhaps in a band  

    .  For consistency between traditional NCC algorithms and Passive Neutron 

Multiplicity Counting (PNMC) algorithms there is a case for using these empirical forms 

of dead time corrections, developed for Totals and Reals, for singles and doubles, 

invoking Dytlewski’s expression only for the Triples rate with an ad hoc value of  , 

specific for the triples. 

 

5.  Yet another option exists in the same spirit as the above.  The Matthes and Haas results 

has recently been reworked by us into a simple analytical form for easy implementation 

[13].  This has the form (written in the forward or predictive style): 
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       (10) 

 

Where, O is the usual mathematical notation for the order of magnitude error introduced by the 

approximation,  d is the dead time parameter for the system and    is the 1/e dieaway time of the 

system, and  for a system with an exponential capture time distribution: 

                             (11) 

          

                                  (12)  

     
                     

 
         (13) 

where     and     are the pre-delay and coincidence gate width settings respectively, used in the 

shift register analysis.  From these relationships, we find by algebraic rearrangement the 

following equality for the case that the detector (rather than the item kinetics) dominates the 

capture time distribution and exhibits a single exponential die-away profile: 

 

  
 

 
 
  

  
    

      
          

 
        (14) 

      

 

Again the idea here would be to use these simple analytical results for the dead time corrected 

singles and doubles rates, invoking the Dytlewski expression only for the triples rate. 

There is also an important additional twist.  For each of the variations described, which are to do 

with the evaluation of intermediate steps, one may use either of the two forms listed for the dead 
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time corrected triples rate, that is either Eqn (6) or (8), which would introduce additional 

numerical differences unless the fully internally self-consistent Croft-Dytlewski intermediate 

results are used. 

From this discussion it should be clear that when a dead time correction is being described it is 

necessary to give a complete description of the actual dead time correction equations being used.  

If not, then there is sufficient ambiguity that exact numerically agreement may not be obtained 

by another (independent) worker trying to reproduce or replicate how the dead time correction 

was estimated and applied. 

 

 

Extracting the Effective Dead Time Parameter:  A Proposed New Experimental Method 

 

In principle many methods might be acceptable for estimating the dead time including a first 

principles based assessment of the signal formation and processing chain.  However, treating the 

dead time as an effective parameter to be estimated from detector characterization measurements 

is likely to remain a common practice.  Data taken to exercise a system before it enters service 

can be used for this purpose.  Also, basing the dead time on direct measurements may partially 

compensate for any mismatch between the way the actual system behaves and the idealizations 

supporting the theory.  Such methods could include twin sources 
252

Cf; 
252

Cf +AmLi series; 
252

Cf  

series; AmLi histogram analysis; time interval analysis; pulse injection methods etc. Here we 

propose a potentially simple way to estimate the dead time parameter experimentally. 
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The self-consistent Dytlewski-Croft-Favalli histogram formulated dead time correction method 

can be used to analyze the A-histogram collected using a pseudo-random neutron source for 

mean and reduced factorial moments.  By adjusting   to correct the measured distribution back 

to the characteristics of the input Poisson distribution we have a way to determine the effective 

dead time parameter of measurement system using a single AmLi sealed radionuclide neutron 

source (as well as, if available, AmF or AmB (α,n)-neutron sources, while AmBe (α,n)-neutron 

source is not good to our aim due to (n,2n) correlation in Be[34])) [35], for example, rather than 

by the traditional means commonly used by the safeguards community which requires a set of 

252
Cf sources spanning a broad dynamic range of counting rate and is based on achieving       

and       ratios which are independent of source strength.  Note, the Poisson distribution 

possesses the following interesting property that we can utilize for doing this.  The p
th

 reduced 

factorial moment of a Poisson distribution is given by: 

 

                     

  
  

  

  
        (15) 

 

Thus, experimentally, our choice of   may be based on the requirement that the ratio of twice the 

second factorial moment to the square of the first factorial moment should equal unity for a 

random neutron source.  Algebraically, within Dytlewski framework, this procedure for 

estimating the dead time   may be expressed as follows: 

 

                 
        

 
   

      
 
   

     

     (16) 
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This is a new result for how the (gate width setting dependent) effective dead time parameter for 

use specifically with the Dytlewski-Croft-Favalli MSR dead time correction method [14,15] 

might be experimentally determined.  If the acquired data supports the extraction of higher order 

moments with sufficiently high precision, one could include those also, and thus estimate   from 

an over determined set of relations.  The utility of this proposed new method has yet to be tested 

experimentally. 

 

 

Extension to Quads and Pents 

 

The beauty of Dytlewski’s work [5] is that it provides a straightforward prescription for how to 

calculate the dead time corrected reduced factorial moments directly from the observed item 

specific multiplying shift register (MSR) histograms as simple vector operations.  Expressions 

for the  - and  -vectors appearing in the expressions for doubles and triples are given in [5].  

For routine use these need to be calculated once and for all for a given detection system because 

they are part of the systems characteristic parameter set, like neutron detection efficiency and 

die-away time, which should not ordinarily change.  To compute the quads rate from mixed STI 

and RTI histograms we require the extension to the third reduced factorial moment in order to 

obtain a similar prescription.  That is, we seek the general expression for    in the following 

action on the measured multiplicity histogram   
 : 
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         (16) 

 

The quads rate is then derived from the recorded multiplicity histograms as follows: 

 

      
 

 
               

 

  
 
     
 
   

   
 
   

                    
 
     (17) 

 

Extending the method to the Pents rate follows a similar path requiring general expressions for    

in the relation for the fourth reduced factorial moment.   
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Again using mixed STI and RTI histogram expressions, the pents rate is derived from the 

recorded multiplicity histograms as follows: 
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where we have used the result: 
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which simply expresses that the dead time corrected mean number of events recorded in the 

accidentals gate per unit time defines the dead time corrected singles rate.  Deriving mixed 

expression for the higher order correlated rates follows the same simple pattern. 

 

Note, as previously highlighted, within the approximations and limitations of the Dytlewski dead 

time correction model the same manipulations are applied to the (R+A)-histogram as to the A-

histogram.  Thus, our extended Dytlewski approach also gives us a way to compute dead time 

corrected correlated rates based on STI-only (with RTI single DTC), and RTI-only data as well 

as the MIXed STI/RTI histogram expressions.  For the purposes of illustration in this section we 

elect to use one form of the mixed expressions.  We discuss all three rate extraction options in 

Appendix I [see also Ref. 22, 23].   

 

The problem of dead time correction now becomes one of computing the    and    functions.  

This has been reported but without justification or discussion in [14] and [15] respectively.  In 

the Appendix II we give the results along for how to compute them and also approximate forms.  

When the random triggered inspection histogram alone is being used to compute pents we need 

dead time coefficients to extract the fifth reduced factorial moment.  This leads to the 

introduction of what we call the    coefficients and we give a full description of these also. 

 

In Appendix II we provide the mathematical foundation of the complete Dytlewski-style 

approach.  The transformation matrix between the observed and DTC multiplicity histograms is 

developed.  Expressions for the coefficients are obtained.  The first few are written out explicitly 

and provide the starting point for iterative numerical evaluation.  For a given measurement 
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system the coefficients only need to be calculated once.  This is the first comprehensive 

mathematical discussion of the Dytlewski-Croft-Favalli DTC formalism.   

 

Appendix I we give expressions for how to extract the DTC factorial moment multiplet rates 

from the acquired histograms.  We provide STI, RTI and MIXed results.  Traditionally only the 

MIXed results have been used by the international safeguards community and only up to third 

order.  Extraction of the DTC rates closes the loop on how to then exploit the point-model 

equations which are to be solved in order to make a quantitative assay of an item.  For 

completeness we work in terms of normalized histograms so that the fast accidental sampling 

scheme (which we always favor) is naturally included.   

 

 

Conclusions 

 

The pioneering work of Böhnel [32], and also of Hage and his colleagues [33], especially during 

the early 1980’s time period paved the way for the practical implementation of three parameter 

multiplicity counting analysis based on time correlation counting.  From a practical stand point 

the application of fourth and higher order correlations [7] in neutron counting has been hampered 

by the lack of a convenient and reliable rate loss compensation scheme.  In this work we have 

summarized the current state of the practice in an accessible way and extended a popular dead 

time correction technique to fourth and fifth order.  The generalization to all orders is also made 

clear.  In particular we have provided various ways to extract higher order multiplet rates, a self-
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consistent dead time correction scheme for singles, and the necessary closed form interpretation 

model equations for the factorial moments.  A companion paper on experimental demonstration 

of the main theoretical results presented here is planned. 

 

The principle limitations of high order multiplicity counting are associated with counting 

precision, accuracy of the rate loss treatment, and validity of the point model assumptions.  

Statistical viability taken together with the requirements of the basic theoretical model demands 

the use of a detector with a high and flat (in energy and space) efficiency, a detector with short 

and nearly exponential die-away profile, a detector with as little system dead time as practical, 

and conforming items (for example dry plutonium dioxide powders decoupled from their 

surrounding).  These are not trivial requirements and may result in quadruplet and pentuplet 

analysis to be useful only under special conditions.  While the detector design will play a 

significant role in the feasibility of using, we have identified options for signal extraction and 

correction.  Breaking free of the constraints of the point model will be necessary.  A point model 

based Monte Carlo pulse train simulation which by definition includes accidentals but not the 

full transport details of the problem is probably adequate to explore the influence of dead time 

parametrically, including sampling from a distribution of dead times rather which is a refinement 

over the assumption of a fixed value, but it is apparent even so that long runs are needed to 

achieve adequate precision for the higher orders – hence the attraction of minimizing dead time 

through design so that a simple algebraic approach is satisfactory.  Monte Carlo methods as a 

replacement for the point model equations seems impractical in the very near term for routine 

use or for real time applications, although detailed look-up tables may be an approach to study.  

In some applications analytical extensions to the point model might be possible and useful 
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depending what is known or can be safely assumed about the item.  But we expect that 

deterministic codes, which are far faster than Monte Carlo methods, may be able to plug the gap 

by adapting and extending algorithms developed reactor noise analysis. 

Our objective here has been to identify and develop a pathway for the exploration of higher order 

multiplets to solve practical non-proliferation and nuclear safeguards measurement problems.  

The practical benefits to other areas, for example, benchmark quality sub-criticality experimental 

work aimed at determining basic nuclear data, remains to be assessed and sits on the cutting edge 

of research in this area. 

 

This work also suggests several paths of future research.  In the Dytlewski formulation of 

multiplet dead time corrections the gate width enters through the parameter   
 

  
.  As far as we 

are aware this implied dependence has not been systematically studied experimentally and needs 

to be done.  Dytlewski’s work [5] is based on Vincent’s expressions for       , the probability 

that   events will be lost to dead time when the true size of the group is   [8].  It is an interesting 

proposition to replace this foundation by Vincent’s later expressions [16] in which he extended 

his earlier analysis, which assumed a Poisson arrival time distribution over the gate, to explicitly 

include time correlation present on the pulse train.  Not discussed in the present paper are the 

potential benefits of using cross-correlation in addition to autocorrelation TCA for both dead 

time correction and precision.  Preliminary work suggests this will also be a fruitful avenue to 

explore. 
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Appendix I:  Extracting Neutron Multiplet Rates from the Normalized Multiplicity Shift Register 

Histograms 

 

For completeness, in this Appendix, we summarize the expressions that may be used to extract 

the dead time corrected multiplet rates from the normalized multiplicity shift register histograms.  

Using normalized histograms allows the fast accidental sampling strategy to be incorporated 

from the onset [21].  Some of these results have been previously reported in the proceedings of 

the Annual Meeting of International Nuclear Materials Management [22, 23]. 

 

The familiar SDTQP rates are related to the more fundamental multiplet rates R1 R2 R3 R4 R5 

through extraction-method dependent gate utilization factors, where R1 R2 R3 R4 R5 are the 

reduced factorial moments on the pulse train in the limit of infinite coincidence gate width (and 

zero predelay). 

 

The STI histogram is naturally normalized to the total number of neutron event triggers recorded 

during the assay.  We have: 

   
 
             (A1) 

 

The RTI histogram may be normalized differently, for instance in the case of FAS we have: 

 

   
 
             (A2) 

 

where      is the number of periodic clock requests at a frequency   to inspect the contents of 

the A-gate.  Both MIXed and RTI-only implementations when applied to MSR histograms 

benefit from the use of fast accidental sampling to improve the overall precision.  FAS is always 
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favored when the counting conditions are stable as it leads to the best overall precision in the 

extracted rates over the entire dynamic range.  Because of the different sampling schemes it is 

therefore convenient to work in terms of the corresponding normalized frequency distributions.  

The normalized histograms are defined as follows: 

 

   
  

    
  (A4) 

   
  

    
  (A5) 

          (A6) 

 

We define the following operations to compute dead time corrected reduced factorial moments 

over these three distributions in the spirit of the Dytlewski dead time correction model: 

       
 
       (A7) 

          
 
     (A8) 

          
 
     (A9) 

          
 
     (A10) 

          
 
     (A11) 

          
 
     (A12) 

 

where   stands for  ,   or  . 

 

In practice summations can start at     since the definition of the multipliers (  through  ) 

ensure zero contribution outside the stated range.  The upper range of the summation ends at the 

last value of   that is populated.   

 

The STI and MIXed Gate Utilization Factors (GUFs) for Doubles through pents,    through   , 

(also denoted by    through   ) represent the fraction of the ideal multiplet rate that falls within 

the finite gating structure of the MSR.  Thus, taking quads as an example we can write       .  

Note      which reflects the fact that the measured Singles counting rate is unaffected by the 

choice of either the predelay and coincidence gate width.  In the case of RTI TCA the 
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corresponding GUFs are denoted by    through    (again     ) and these in turn again 

represent the fraction of the ideal multiplet rates collected by the finite coincidence gate width 

[1,2]. 

 

GUFs may be estimated in various ways [23-28].   They are usually treated as fixed values, 

characteristic of the detector system, and are dealt with through detector characterization and 

calibration. 

 

Next we give the forms of the RTI, STI and MIXed multiplet expressions in terms of the ideal 

reduced factorial multiplets.  After that we provide expressions in terms of the histogram (dead 

time corrected) reduced factorial moments which are better suited practical calculations. 

 

RTI only Expressions  

 

The dead time corrected reduced factorial multiplet rates extracted solely from the normalized 

RTI histogram under the current scheme are therefore given by: 
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    (A17) 

 

MIXed Expressions 

 

Historically shift-registers were conceived to count correlated pairs (the trigger plus the number 

of events falling in the associated gate).  In the absence of dead time and other non-ideal 

behaviors the difference between the (R+A)- and A-registers per unit time gave the pairs (also 

known as the Reals, coincidence or Doubles) rate directly.  With the advent of MSR modules the 

convention of working with differences, in this case the difference between the STI and RTI 

histograms persisted.  The dead time corrected reduced factorial multiplet rates extracted from a 

combination of the normalized STI and RTI histograms, under the current dead time model are 

given, in a convenient and instructive form by [1,2, 22,29].  These extend the conventional 

multiplicity counting expressions for the first three moments [30,31] commonly used for 

applications. 

 

Singlets: 

 

         
    

 
   

      
 
   

     
 
   

  
   
 
   

 
   (A18) 

Doublets: 

   
  

  
 

 

  
      

 

  
                 (A19) 

 

The form on the far right hand side, which makes use of the calculated Accidentals Doubles rate, 

may be more precise, for data collected under steady ambient background rate conditions, when 

the RTI histogram is acquired using event triggering.  On the other hand, when fast accidentals 
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sampling is used the result based on the difference expression is generally favored because it 

gives greater precision. 

 

Triplets to Pentuplets: 
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STI only Expressions 

 

The dead time corrected reduced factorial multiplet rates extracted from the normalized STI 

histogram, BUT with the singles dead time correction that is used for the accidentals histogram, 

under the current scheme are given by: 
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Note these expressions are more complicated to apply because they involve both kinds of GUFs 

(both    and   ) and so, for a given application, introduce an extra set of experimental 

parameters that need to be established ahead of time.  Note too that because the trigger neutron 

forms one part of the time correlation multiplet, the order of the action on the histogram is one 

less than the order of the multiplet.  That is   , for example, involves terms up to    .  In 

comparison, in the RTI case, terms up to     are involved. 

 

 

RTI only Expressions (for practical implementation) 

 

We shall write the expressions for SDTQP suitable for practical use when FAS is employed. 

We are working in terms of SDTQP because this is the established tradition within the 

safeguards community.  We use the notation:     
  

  
.  Taking quads as an example, we 

therefore understand that:           
 

  
          , which, being the product of a rate and 

a time is just a number with units of quads, with the presence of the RTI GUF multiplier (  ) 

accounting for finite gate width of the randomly placed gate on the pulse train. 

                (A28) 
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MIXed Expressions (for practical implementation) 

 

Convenient SDTQP rates are straightforward to derive by successive substitution into the 

academic forms.  Thus: 
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STI only Expressions (practical considerations) 

 

Let us first consider the special case where there are no dead time losses. 
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We immediately see that there is no Dytlewski-style way to estimate the dead time corrected 

singles rate solely from the STI-histogram.  This is because          is the observed trigger 

rate and missing triggers (opening of the coincidence gate) due to dead time losses cannot be 

accounted.  There are just fewer gate opening but we don’t know how many fewer.  Our earlier 

results for the dead time corrected singles rate made use of the RTI-histogram.  And in a fully 

self-consistent scheme we would expect the dead time corrected Accidentals doubles rate to 

agree with the value calculated using the dead time corrected Singles rate,      
   . 

 

A second serious drawback is evident when one considers how the GUFs come into play.  Take 

the STI-only expression for triples which we may re-write as follows:   

                        
 

 
         

 
    (A43) 

 

We observe that the factor    is embedded in the expression and there is no way to eliminate it 

using information from lower order terms.  It therefore has to be treated as a well-known 

parameter determined independently of the (item specific) assay data.  The same kind of 

dilemma exists in the expression for Q and also P.  This reflects the fact the event triggered STI 

histogram captures a combination of genuine short term correlations and chance coincidences 

with respect to the trigger events and, within the STI-only formalism, it is not possible to get at 

the chance coincidence fraction in isolation experimentally.  To account for the chance events 

one must make use of the theoretical relationships governing the structure of the data which 

imports the gate factor ratios. 
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For these two reasons (the lack of a self-consistent trigger rate dead time compensation scheme, 

and the manifestation of the two types of gate utilization factors in the multiplet-rate expressions) 

the STI-only expressions do not readily lend themselves to practical implementation. 
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Appendix II:  Mathematical Foundations 

 

The average measured multiplicity histogram, represented in matrix notation by the column 

vector    with elements   
  corresponding to the number of times that multiplicity   was 

observed, where            and                      , is taken as an approximation to 

the expectation value of the true underlying multiplicity histogram, denoted by the column 

vector,  , by the equation: 

 

          (B1) 

 

where   is a square matrix of dead time loss probabilities.  Note we have taken care to qualify 

our description of this equation in terms of average, or expectation, quantities with the 

understanding that actual measured data will be subject to statistical variation.  Experimental 

data are usually broken into a series of shorter acquisition cycles, each of viable precision, so that 

a statistical analysis can be performed to extract the uncertainty and covariance structure in the 

derived rates.  The ‘best’ assay is based on the analysis of the average (or summed) histogram, 

with the cycle data being used solely to quantify the uncertainty. 

 

For illustration, in the case in which the highest multiplicity       , relation (B1) may be 

written explicitly as follows: 

 

 
 
 
 
 
 
 
  
 

  
 

  
 

  
 

  
 

  
  
 
 
 
 
 
 

 

 
 
 
 
 
 
      
                          
                          
                     
                

            
 
 
 
 
 

 
 
 
 
 
 
  

  
  

  

  

   
 
 
 
 
 

  (B2) 

 

where        is the probability that   dead time losses will occur in a group of   true events. 

 

We see immediately that the   matrix a special kind of square matrix known as an upper 

triangular matrix.  Triangular matrices are easier to invert than general invertible square matrices 
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because one can solve them by successive back substitution, in the case of an upper triangular 

matrix starting with the highest order term,      
        .  The determinant is just the 

product of diagonal entries. 

 

Several interesting aspects of this relation deserve comment.  Because it is assumed that the 

coincidence gate is unblocked when it is opened, the first event in of a group is always detected.  

Algebraically this may be expressed as follows: 

 

                (B3) 

 

Consequently, under this scheme of dead time loss, occurrences of true high order multiplicity, 

can never get completely downgraded to measured multiplicity of order 0 (zero).  Additionally 

signal triggered order zero events always get recorded with perfect fidelity,          and 

        .  Taken together this is the explanation for why: 

 

  
         (B4) 

 

The        are true probabilities which necessarily satisfy the following normalization 

condition: 

 

                    
   

 
       (B5) 

 

where the second form follows because          as discussed. 

 

This normalization condition expresses the fact that, when true high multiplicity events suffer 

dead time losses, the measured histogram gets shifted downwards to lower values, but the overall 

number of records in the dead time affected histogram remains the same.  That is, according to 

this model, the histogram changes shape but the area is unchanged.  Mathematically this is 

expressed by the following equality that holds between the zeroth moment of the (dead time 
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corrected) true multiplicity histogram and the (dead time affected) measured multiplicity 

histogram: 

 

      
 
       

  
       (B6) 

 

To put this in another way, the number of records (the number of times the coincidence gate was 

inspected) is set externally by the number of gate triggers (e.g. event or clock).  The effect of 

dead time losses is simply to redistribute the tally pattern to lower bins. In the case of neutron-

event triggering, the trigger rate also requires dead time correction as discussed in the main text.   

 

Formally then, the expectation value of the dead time corrected multiplicity histogram may be 

obtained from the measured histogram by the solution of our earlier equation, namely: 

 

                 (B7) 

 

This direct method is suitable for the correction of low rate, low multiplicity data.  For example, 

for in-burst correction of fission-neutron losses recorded from a weak fission source, an example 

being measurements used to generate the basic prompt neutron multiplicity distribution.  Having 

generated the dead time corrected histogram it can be manipulated in whatever way is required, 

for instance to generate reduced factorial moments of any order.  However, according to 

Dytlewski [5] this direct approach fails (presumably for typical thermal well safeguards counters 

and including the type he cites in his paper, 77.4 ns dead time and coincidence gate width of 16 

μs) when the maximum multiplicity exceeds about 20.  The reason given is that the dead time 

correction factors comprising    and which are functions of the        cannot be computed with 

adequate accuracy for the inversion to remain numerically robust.  Despite this apparent impasse, 

what Dytlewski [5] then showed was that the first and second reduced factorial moments could 

none-the-less be computed accurately using the    and    coefficients.  We shall discuss this 

observation in greater detail below.  We also extend Dytlewski’s idea of using a simple matrix 

operation to extract reduced factorial moments to order three, four and five.  This allows us to go 

beyond triples enabling us to also calculate quads and pents for all three gating structures (STI, 

RTI and MIXed) [see Appendix I].  For each order we present the results explicitly although a 

generalized notation would be more compact.  We do this because the explicit expressions are 

more convenient for visualizing the trends and also for software coding and code checking.  We 

also provide the general form of the dead time correction matrix coefficients for any order.  
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Taken together, the self-consistent dead time correction of the singles rate, the Dytlewski 

assumptions, and the generalized extension in matrix form, constitute what is referred to as the 

Dytlewski-Croft-Favalli (DCF) dead time correction method.   

 

The first reduced factorial moment of the dead time corrected histogram is evaluated as follows: 

 

       
 
         (B8) 

 

which in matrix notation becomes: 

 

      
            (B9) 

 

where    is the row matrix with elements which are the weighting coefficients to generate the 

first reduced factorial moment, that is: 

 

               (B10) 

 

and   is the row vector    
   with elements   ,                            .   

 

Expressions for the second and higher reduced factorial moments follow with obvious extension 

of the above notation.  For the second reduced factorial moment we have: 

 

    
      

 
  

 
        (B11) 

 

which in matrix notation becomes: 
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            (B12) 

 

where    is the row matrix with elements which are the weighting coefficients to generate the 

second reduced factorial moment, that is: 

 

         
      

 
     (B13) 

 

and   is the row vector    
   with elements   ,                             as before, and is 

to be understood in all similar cases.   

 

 

For the third reduced factorial moment we have: 

 

    
           

 
  

 
       (B14) 

 

which in matrix notation becomes: 

 

      
            (B15) 

 

where    is the row matrix with elements which are the weighting coefficients to generate the 

third reduced factorial moment, that is: 

 

         
           

 
    (B16) 

 

and   is the row vector    
   with elements   ,         .   
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For the forth reduced factorial moment we have: 

 

    
                

  
  

 
        (B17) 

 

which in matrix notation becomes: 

 

      
            (B18) 

 

where    is the row matrix with elements which are the weighting coefficients to generate the 

third reduced factorial moment, that is: 

 

          
                

  
    (B19) 

 

and   is the row vector    
   with elements   ,         .   

 

 

For the fifth reduced factorial moment we have: 

 

    
                     

   
  

 
       (B20) 

 

which in matrix notation becomes: 

 

      
             (B21) 
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where    is the row matrix with elements which are the weighting coefficients to generate the 

third reduced factorial moment, that is: 

 

           
                     

   
     (B22) 

 

and   is the row vector    
   with elements   ,         . 

 

 

Note, as we shall see explicitly again later, to calculate a given order multiplet rate from the STI 

or MIXed, requires the factorial moment of one less order, because the trigger neutron provides 

one of the time-correlated events.  In contrast, to calculate a given multiplet rate from the RTI 

histogram alone, however, requires the factorial moment matrix operation of the same order.  

Thus, to compute Single, Doubles, Triples, Quads, Pents (SDTQP), from the STI or MIXed 

expressions requires only the   ,   ,   , and    functions.  But to compute pents solely from the 

RTI histogram also requires knowledge of the    functions.  That is to say, to compute quads 

from the RTI histogram requires that we have a dead time correction scheme up to pents (in the 

STI and MIXed schemes).  We could proceed along similar lines to even higher order rates 

which would call for relations for even higher order reduced factorial moments, but, because for 

all cases of practical safeguards interest in quantitative neutron multiplicity counting quads is 

already at the limit of statistical viability, we have elected to stop our explicit illustration at pents 

here. 

 

Dytlewski [5] gives expressions for the    and    functions but not for   ,    or   , because he 

only considers SDT using mixed expressions.  In formulating the expressions for    and    

Dytlewski adopted the expressions for        from Vincent [8] based on the assumptions 

outlined in the main text.  The form of        is thus: 

 

       
      

        
 

       

        

 
                  (B23) 

 

For the case          used in our explicitly worked example above, we find: 
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We see that the        coefficients become challenging to evaluate accurately by direct 

numerical methods for large   because the terms become large and fluctuate in sign. 

 

In addition to the general expressions, we shall now list the leading six elements of the  ,  ,  ,   

and   matrices.  These are both pedagogically instructive and also helpful in checking any 

software implementation of the general expressions.  We also give general limiting 

approximations for the case where the dead time is vanishingly small. 
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   functions 

 

         

and for     

         
   
   

 
        

             
   
      (B24) 

 

In factorial notation the Binomial coefficient is given by: 

 
   
   

  
      

              
  (B25) 

with the usual convention that     . 

 

The leading six terms are: 
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To first order in   in the limit     we have: 

 

                   (B26) 

 

To illustrate the use of this limiting result, let us suppose that the pulse train is only slightly 

perturbed so that we may approximate the accidentals histogram, to first order, by the 

unperturbed Poisson count distribution with mean      .  The average singles rate is therefore, 

to some rough approximation, given by the dead time corrected average of events falling in the 

accidentals gate per unit time: 

 

   
    

  
 

             

  
   

     

  
            (B27) 

 

where we have used the definition        and the relation that for a Poisson distribution the 

second factorial moment is equal to the square of the mean.  Thus we see, in this limiting case 

and subject to this approximate logic that the singles dead time correction behaves as expected.  

The singles dead time correction factor being of the order of        . 

 

 

   functions 

 

          
 

      
 

 

and for     
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    (B28) 

 

In factorial notation the Binomial coefficient is given by: 

 
   
   

  
      

              
     (B29) 

with the usual convention that     . 

 

The leading six terms are: 

 

     

     

   
 

      
 

   
 

      
 

    

       
 

   
 

      
 

    

       
 
      

       
 

   
 

      
 

     

       
 
        

       
 
         

       
 

 

To first order in   in the limit     we have: 

 

   
      

 
               (B30) 
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   functions 

 

             
 

       
 

and for     

 

                 
   
   

 
 

 
                  

             
   
     (B31) 

 

In factorial notation the Binomial coefficient is given as: 

 

 
   
   

  
      

              
      (B32) 

 

with the usual convention that     . 

 

The leading six terms are: 
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To first order in   in the limit     we have: 

 

   
           

 
                 (B33) 

 

 

   functions 

 

                  
 

       
 

and for     

 

                      
   
   

 
 

 
                       

             
   
    (B34) 

 

In factorial notation the Binomial coefficient is given as: 

 
   
   

  
      

              
       (B35) 

with the usual convention that     . 

 

The leading six terms are: 
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To first order in   in the limit     we have: 

 

   
                

  
                  (B36) 

 

 

   functions 

 

                       
 

       
 

 

and for     

 

                           
   
   

 
 

  
                            

             
   
    (B37) 
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In factorial notation the Binomial coefficient is given as: 

 

 
   
   

  
      

              
        (B38) 

 

with the usual convention that     . 

 

The leading six terms are: 

 

     

     

     

     

     

   
 

       
 

 

To first order in   in the limit     we have: 

 

   
                     

   
                (B39) 

 

In the general case we can write: 
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where   ,   … are generalized as 
( )m

n , and  
(1)

n n  , 
(2)

n n    …   

 

 

The first order expansions are only useful for cases in which the histograms extend only to low 

multiplicity and when the dead time is also small compared to the gate width.  The optimum gate 

width for shift-register multiplicity counting is usually set close to about 1.26 times the system 

die-away time so as to achieve near optimum precision [20].  The applicability of the first order 

expansion is potentially very restrictive on the value of  .  For instance, for a MSR which score 

the histograms over the range           , the in the case of      we require         

        .  Suppose      ns and       μs and so        .  In such an extreme case 

the first order expansion would certainly NOT be suitable to cover the full depth of the 

instrumentally available histogram.  But, if the highest populated histogram is far below the 

instrumental maximum, then for this illustrative example there may be a domain where the first 

order approximations might work to an acceptable degree of accuracy.  A higher order Taylor 

polynomial might provide an adequate approximation for all practical applications of interest 

provided the measurements remain within certain boundaries e.g.       and       .  We 

have not looked at this further however because implementation of the full expressions is 

straightforward and there seems to be no compelling reason to introduce an approximate 

approach with penalizing qualifications. 


