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Abstract11

In the standard practice of neutron multiplicity counting , the first three sampled12

factorial moments of the event triggered neutron count distribution are used to quan-13

tify the three main neutron source terms: the spontaneous fissile material effective14

mass, the relative (α, n) production and the induced fission source responsible for mul-15

tiplication.16

This study compares three methods to quantify the statistical uncertainty of the es-17

timated mass: the bootstrap method, propagation of variance through moments, and18

statistical analysis of cycle data method. Each of the three methods was implemented19

on a set of four different NMC measurements, held at the JRC- laboratory in Ispra,20

Italy, sampling four different Pu samples in a standard Plutonium Scrap Multiplicity21

Counter (PSMC) well counter.22

23

Keywords: Neutron Multiplicity Counting, Passive neutron interrogation, Uncer-24

tainty Quantification.25

1 Introduction26

In the standard practice of Neutron Multiplicity Counting (NMC), the first three sampled27

factorial moments of the event triggered neutron count distribution are used in an inver-28

sion model to extract the spontaneous fission rate, the (α, n) rate and the multiplication of29

the item. A significant advantage of NMC over other nondestructive assay methods is the30
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relative transparency of structural materials to neutrons, making it a useful method when31

sampling impure, poorly characterized items.32

As in any experimental method, uncertainty estimation is an inherent part of the measure-33

ment, and no result is complete without it. Yet, at present, there is no comprehensive guide34

regarding how to estimate the uncertainty of the measured mass using NMC.35

Typically, ”uncertainties” can be divide into three categories: uncertainties in the physical36

parameters (such as detection efficiency, the prompt fission multiplicity distributions etc.),37

systematic errors (due to model assumptions- such as the single energy point model and38

neglecting the delayed neutrons - or due to numeric methods) and the statistical uncertainty39

due to the random nature of neutron counting (and fractionally larger when sampling the40

higher moments).41

From an operational point of view, understanding the statistical error has high importance42

for two main reasons: first, sampling high moments of the count distribution is vulnerable43

to a large statistical uncertainty. Second, out of all the uncertainty factors mentioned , the44

statistical uncertainty is the only one the user can control by extending the duration of the45

measurement.46

The objective of the present study is to perform a comparison between three methods for47

estimating the statistical uncertainty of the estimated mass: the bootstrap method, propa-48

gation of variance through moments and statistical analysis of cycle data.49

The comparison was done experimentally. Each of the three methods was implemented on50

a set of four NMC measurements, held at the JRC- laboratory in Ispra, Italy, sampling four51

different Pu samples in a Plutonium Scrap Multiplicity Counter (PSMC) well counter [1].52

In order to create a reference value, the measurement was repeated for a sufficient number53

of times (30-90), and the statistical spread of the repetitions was used as the reference value.54

The paper is arranged in the following manner: section 2 gives the necessary background55

on NMC and give an overview of the paper. Section 3 describes the different methods used56

to estimate the statistical uncertainty. Section 4 describes the experimental setting and57

introduce and explain the reference values used for comparison. Section 5 describes the58

experimental results, and section 6 concludes.59

2 Neutron Multiplicity counting60

2.1 Neutron Multiplicity Counting and the SVM method61

Most spontaneous fissile materials emit neutrons in a known rate (per mass unit). Thus,62

in a system with a known detection efficiency, the mass of the spontaneous fissile material63

is propositional to the average count rate of the spontaneous fission neutrons in a known64

proportion. However, such simple consideration only provides a partial solution, since the65

count rate of the neutron detections is highly influenced by two additional neutron sources:66

(α, n) reactions in sample impurities, and induced fissions (typically in the odd Plutonium67

isotopes). Moreover, since the detection system is often based on 3He proportional counters68

imbedded in a moderating medium, variations in the energy spectrum between the different69

neutron sources have a negligible effect on the counter efficiency or the die away time, and70

the neutrons can not be distinguished through energetic considerations.71

On the other hand, since the three sources have a different statistical nature, the contribu-72

tion of each source can be quantified by measuring higher moments of the count distribution.73
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Such general considerations are referred to as Neutron Multiplicity Counting (NMC) or Time74

Interval Analysis (TIA).75

Most spontaneous fissile materials emit neutrons in a known rate (per mass unit). Thus,76

in a system with a known detection efficiency, the mass of the spontaneous fissile material77

is propositional to the average count rate of the spontaneous fission neutrons in a known78

proportion. However, such simple consideration only provides a partial solution, because the79

count rate of the neutron detections is highly influenced by two additional neutron sources:80

(α, n) reactions in sample impurities, and induced fissions (typically in the odd isotopes).81

Moreover, since the detection system is often based on 3He proportional counters imbedded82

in a moderating medium, and all neutron sources have (more or less) the same energetic83

spectrum, the neutrons can not be distinguished through energetic considerations. On the84

other hand, because the three sources have a different statistical nature, the contribution of85

each source can be quantified by measuring higher moments of the count distribution. Such86

general considerations are referred to as NMC or time interval analysis.87

The shift register method is routinely used in NMC [2], where the so called Singles, Doubles88

and Triples rate are used to quantify the three neutron sources. Other methods include the89

Random Trigger Interval (RTI) method [3] and the Skewness-Variance-Mean (SVM) method90

[4]. Because all methods, eventually, sample the first the moments of the count distribution91

(although through different random variables), all methods are mathematically equivalent 1
92

[5].93

Since the outline of the present study is estimating the statistical uncertainty in the ob-94

servables - and the final mass result -our choice is the SVM method, where the sampled95

quantities are very simple: the first three central moments of the number of detections in96

consecutive (fixed) gates.97

In more detail, the SVM method is implemented in the following manner: the measure-98

ment (of duration of Ttot) is divided into N consecutive gates of duration T (where T is99

typically on the order of the system neutron die away time, and N = Ttot/T >> 1). De-100

noting the number of neutron detections in the kth gate (1 ≤ k ≤ N) by Xk, the sample101

mean is given by Ê(X) = 1
N

∑N
k=1Xk, sample variance is evaluated through V̂ ar(X) =102

1
N−1

∑N
k=1 (Xk − E(X))2 and the skewness by Ŝk(X) = 1

N−1
∑N

k=1 (Xk − E(X))32. Once103

the sampling is done, the generalized factorial neutron multiplicity moments- defined as the104

factorial moments of the number of neutron emmited in an entire fission chain starting with105

1The term ”mathematically equivalent” refers to the fact that all methods share the same physical in-
terpretation and model assumptions (and the same statistical convergence rate). But how the information
is obtained may differ: different hardware, overlapping vs. non overlapping gates, different accidental esti-
mations, different dead time formulation etc. The expectation for all methods will be the same even though
the uncertainty might not.

2We use the notations Ê(X), V̂ ar(X)′Ŝk(X) rather that E(X), V ar(X), Sk(X) to distinct between the
sampled moments, and the theoretical moments, as would be sampled in a infinite measurement
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a single source event- are related to the sampled moments by [4]:106

DG,1 =
Ê(X)

SPdT
(2.1)

DG,2 =

(
V̂ ar(X)− Ê(X)

)

SP 2
d (e−λT − 1 + λT )/λ

DG,3 =

(
Ŝk(X)− 3V̂ ar(X) + 2Ê(X)

)

SP 3
d (e−2λT + e−λT − 3 + 2λT )/2λ

.

where Pd is the detection efficiency (the probability that an emergent neutron will be de-107

tected), S is the source rate- the number of source events (spontaneous fissions or (α, n))108

per time unit and λ is the reciprocal of the detector system die away time, adopting the109

exponential model.110

Finally, the generalized factorial moments are used to quantify the different neutrons sources111

through the so called ”Bohnel Method” [14, 15], describing the generalized factorial moments112

in term of the following parameters:113

1. The spontaneous fission fraction U : the fraction of the source that is due to spontaneous114

fissions only3
115

2. The leakage multiplication factor ML: the neutron leakage multiplication factor, de-116

fined as the product between the total multiplication and the probability of neutron117

leakage [16].118

3. Dsf,n, Dif,n The nth factorial moments of the neutron emission distribution in a spon-119

taneous/induced fission (respectively)120

Denoting by DG,` = DG,1(U,ML) the `th factorial moment of the distribution of the number121

of neutron emitted in an entire fission ignited by a single spontaneous source event, explicit122

formulas for DG,`, (` = 1, 2, 3) in the prompt, point kinetics approximation are given by:123

DG,1(U,ML) = (U(Dsf,1 − 1) + 1)ML (2.2)

DG,2(U,ML) = M2
L

(
UDsf,2 +

ML − 1

Dif,1 − 1
(U(Dsf,1 − 1) + 1)Dif,2

)

DG,3(U,ML) = M3
L(UDsf,3 +

ML − 1

Dif,1 − 1
(3UDsf,2Uif,2

+ Dif,3(U(Dsf,1 − 1) + 1)) + 3

(
ML − 1

Dif,1 − 1

)2

D2
if,2(U(Dsf,1 − 1) + 1))

Equation 2.1 and 2.2 form a set of three (non linear) equations with three unknowns. Once124

the set of equations is solved, the mass is proportional to S×U , and the proportion coefficient125

is the reciprocal of the spontaneous fission rate (per gram). When measuring Pu samples,126

the spontaneous fission rate is approximately 473.5 fissions per gram per second [2].127

3if we denote by Sf the spontaneous fission rate, and by Sα the (α, n) rate, then S = Sf + Salpha and
U = Sf/(Sf + Sα).
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2.2 Aim and Motivation128

In recent years, the use of NMC methods has seen constant growth, becoming a standard129

tool in safety, safeguards and facility operations. Thus, the need for a full uncertainty quan-130

tification is becoming more important. In response, we see growing interest, both academic131

and practical, in uncertainty quantification in NMC [17].132

As stated, in the present study, we will restrict our discussions to the third factor only: statis-133

tical uncertainty. Quantification of the statistical uncertainty of the measurement variance134

in NMC, naturally, has been studied before, and there are several publications regarding135

both the estimation ([6],[7],[10], to state a few) and the optimization ([11],[12]) of the mea-136

surement variance. The outline of the present study is to perform a comparative research137

between three of the both basic and widely used methods for estimating the statistical un-138

certainty in the measurements. With the end user of NMC at mind, we applied the following139

principles through the study:140

1. All procedures and methods were described in full detail.141

2. Comparison was carried out not only in terms of the observables (the measured mo-142

ments), but also - and more importantly- in terms of the final outcome of the measurement-143

the mass.144

3. The different methods were compared not only between themselves- which will only145

indicate if the methods agree or not- but also with a reference value (which will be146

explained in section 4.2). This allows us to determine through quantification which147

method performs best.148

3 Estimating the statistical uncertainty in NMC149

In this section, a description of each of the methods studied is presented.150

Before introducing the methods, we start with a remark. In the first two methods described,151

estimating the statistical uncertainty in the measured mass is done in two steps: The first152

is to estimate the uncertainty of the experimental observables (here E(X), V ar(X) and153

Sk(X)). Then we must run a sensitivity analysis, in order to understand how the error in154

each observable propagates onto the final result of the estimated mass. In section 3.2 we155

give a mathematical formalism connecting the uncertainty in the measured values and the156

statistical uncertainty of the mass.157

3.1 Description of methods158

3.1.1 Method I: Statistical Analysis of Cycle Data (SACD)159

The first method described is the most basic one. By definition, the best estimation for the160

statistical uncertainty in any sampled value is to repeat the experiment enough times, and161

directly sample the width of the distribution. From a practical point of view, however, this162

may be prohibitive: the uncertainty estimation often needs to be obtained through a single163

measurement. On the other hand, the measurement can always be treated as a ”composition”164

of any number of sub-measurements. Thus, we may estimate the statistical uncertainty in the165

following manner: The total measurement will be broken into n sub- measurements (with,166

5



typically, n ≥ 10), each of duration T/n. Then, for each sub-measurement, the first three167

central moments are evaluated. For a measurement of duration T/n, the standard deviation168

of the jth moment, can be estimated through the standard deviation between the different169

sub-measurement. Finally, the standard deviation for the full measurement is estimated by170

division byx
√
n.171

Theoretically, in each measurement we may also compute the mass, and then estimate the172

standard deviation of the mass directly. This, however is somewhat problematic because it173

requires each sub-measurement to yield a meaningful result (that is , significantly larger than174

the detection limit). Looking at equations 2.1, we see that the variance must be larger than175

the mean, and the skewness must be larger than the variance added to twice the mean (in176

terms of the multiplicity method, this is just to state that the doubles and triples must have177

a positive rate). If the sub-measurement is too short, the statistical uncertainty will cause a178

deviation from these conditions, resulting with an estimated multiplication factor ML smaller179

than one, or a negative sampled (α, n) rate- which are nonphysical values. In terms of the180

mass, this will create a very large error, which is totally incompatible with the statistical181

error of the full measurement. This approach, in fact, was also tested when working on the182

present study, and as we will demonstrate in section 5, results are less favorable.183

3.1.2 Method II: Propagation of Variance through Moments (PVM)184

As a general fact, if X is a random variable, then the variance of g(X) for a general function4
185

g is given by E
[
(g(X)− E(g(X)))2

]
. In particular, the variance of the variance and the186

variance of the skewness may be evaluated by:187

V ar(V ar(X)) = E
[
{(X − E[X])2 − E

[
(X − E(X))2

]
}2
]

(3.3)

V ar(Sk(X)) = E
[
{(X − E[X])3 − E

[
(X − E(X))3

]
}2
]

(3.4)

.188

Using equations 3.3 and 3.4 we can explicitly write down the variance of the variance as189

an algebraic combination of the first four moments, and the variance of the skewness as an190

algebraic combination of the first six moments (see appendix A). Since the first six moment191

may be sampled from the data, this will result with an approximation of the standard192

deviation for both the variance and the mean.193

One last remark: This study uses the SVM method. Thus, the moments sampled are the194

central moments. Ref [5] established that all moments based NMC methods are equivalent,195

and have the same statistical convergence rate. Appendix A gives explicit formulas for the196

variance of the second and third factorial moments in terms of the first six moments5197

3.1.3 Method III: The Bootstrap method (BS)198

The bootstrap method is a standard re-sampling method, aimed to estimate the statistical199

uncertainty when sampling from a large population [18]. The bootstrap method was adopted200

4From a theoretical point of view, the function g must satisfy certain mathematical conditions, such as
Lebesque integrability. Practically, all the conditions are met in the present context, and the formulas are
fully applicable

5The PVM methods works here because the gates are not overlapping and we are using the simple count
distribution. When using the event triggered gate ”(R+A)” in the multiplicity method [2], it will however
bring some potential complications.
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to NMC in [6, 19], and was carefully studied in [13]. A full description of the method is201

beyond the scope of this paper, but the general idea is to create the so called ”bootstrap202

distribution” by a random re-shuffling process of the data.203

The ”shuffling” process is done by breaking the total measurement into very short gates204

(typically, in the order of 1 sec.), and then the gates are randomly chosen to create a new205

”pseudo-measurement”. This shuffling procedure is repeated for a large number of times206

(typically 300 repetitions) and then, the standard deviation is estimated as the standard207

deviation of the bootstrap distribution.208

As stated, out of the three methods introduced in this paper, the bootstrap method is209

the only one in which we will estimate the uncertainty in the mass directly [13]. The210

implementation of the method in the present study used 2 second gates, and the reshuffling211

procedure was repeated 300 times (see [13] for the exact reshuffling procedure).212

3.2 Input/Output Error propagation213

Our next step is to understand how the statistical uncertainty of the sampled moments214

will effect the uncertainty in the mass. In the remainder of this section, we follow the215

methodology introduced in [7], added for sake of completeness (see also [8]). According to216

the current common practice, we adopt the point model equations.217

Combining equation 2.1 and 2.2 will result with an explicit set of equations of the form:218

E = F1(S, U,ML)

V ar = F2(S, U,ML)

Sk = F3(S, U,ML)

Therefore, using the first order Taylor series to estimate the uncertainty, we may write:219

∆E =

∣∣∣∣
∂F1

∂S

∣∣∣∣∆S +

∣∣∣∣
∂F1

∂U

∣∣∣∣∆U +

∣∣∣∣
∂F1

∂ML

∣∣∣∣∆ML

∆V ar =

∣∣∣∣
∂F2

∂S

∣∣∣∣∆S +

∣∣∣∣
∂F2

∂U

∣∣∣∣∆U +

∣∣∣∣
∂F2

∂ML

∣∣∣∣∆ML

∆Sk =

∣∣∣∣
∂F3

∂S

∣∣∣∣∆S +

∣∣∣∣
∂F3

∂U

∣∣∣∣∆U +

∣∣∣∣
∂F3

∂ML

∣∣∣∣∆ML

(3.5)

or




∆E

∆V ar

∆Sk


 = D




∆S

∆U

∆ML


, where D =




∂F1

∂S
∂F1

∂U
∂F1

∂ML
∂F2

∂S
∂F2

∂U
∂F2

∂ML
∂F3

∂S
∂F3

∂U
∂F3

∂ML


.220

However, in the present context, we are interested in the opposite direction: we use the221

sampled values of σE, σV ar and σSk as estimators for the uncertainties ∆E, ∆V ar and ∆Sk,222

and ∆S, ∆U and ∆ML
are computed through223




∆S

∆U

∆ML


 = D−1



σE
σV ar
σSk


 (3.6)

Before we continue, some clarification is required regarding formula 3.6. Equation 3.6 is224

not a formula for variance of the computed values, but rather a geometric approximation225
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of the uncertainty. Assume the statistical uncertainty of E, V ar and Sk are σE, σV ar and226

σSk. This means that the ”true” values of the point (E, V ar, Sk) in the domain A =227

[E − σE, E + σE]× [V ar − σV ar, V ar + σV ar]× [Sk − σSk, Sk + σSk]. If we assume that the228

uncertainties are small enough (with respect to sampled values), equation 3.6 describes the229

image of A in the (S, U,ML) plane. Thus, ∆S and ∆U (as defined in equation 3.6) serves as230

an estimate of the statistical uncertainty (this sort of geometric approach is often used, see231

[7, 8, 9]).232

Finally, since the mass is estimated through mass = S×U
473.5

, we have that6:233

∆mass =
U ×∆S + S ×∆U

473.5
(3.7)

4 Experimental setting234

4.1 General235

To compare methods, all three were implemented on a set of four 240Pu scrap metal samples.236

All measurements were taken at the Joint Research Center (JRC) laboratory, Ispra, Italy.237

Measurements were taken using standard PSMC [1] neutron coincidence counter (reported238

detection efficiency of 50%, detector die-away time 50 µs, calibrated using a 252Cf source).239

All measurements were analyzed with a gate width of 150 µs (three die away times). A240

detailed description of the measurements is given in the table below:241

242

Table 1: Description of the Pu samples and measurement times.243

Sample Pu mass 240Pu 240Pu effective Measurement
[g] effective [wt %] mass [g] Time[h]

CBNM61 6.6 24.9 1.6434 6.6
CBNM70 6.6 18.0 1.1880 5.1
CBNM84 6.6 14.1 0.9306 1.8
CBNM93 6.6 6.3 0.4092 16.8

244

All the measurements were fairly long (in terms of a NMC measurement), so that we can245

create a reference to which the different methods can be compared. The characteristics of246

the reference value will be described in the next section.247

4.2 Construction of the reference value248

To create a point of reference, each of the measurements was broken into sub-measurements249

of duration Ts, with Ts ranging between 3 to 10 minutes. Meaning, we have divided the250

total measurement into smaller segments and considered the count separately: for each251

sub-interval, all first three central moments were evaluated, and the mass was computed.252

This procedure results in a distribution of all three central moments and the mass. The253

number of samples for each distribution, of course, depended on both the duration of the254

total measurement and Ts. For instance, in measurement CBNM93, we took Ts = 10min,255

6Once again, equation 3.7 does not compute the standard deviation of the mass, but rather estimates the
propagation in the the confidence interval geometrically from the (U, S,ML) plane on to the mass
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resulting in a total of 96 samples. Then the variance of each of the four distributions sampled256

was used as the ”reference variance”.257

For instance, figure 2 shows the sampled distribution of the mean, variance, skewness and258

mass in the measurement of sample CBNM93.259

Figure 1: The sampled distribution (on intervals of duration TS = 10 minutes) for the mean,
variance, skewness and mass in sample CBNM93.

The construction of the reference value is, in theory, exactly what we have described in260

method (I). However, because we did not divide in the square root of the number of repeti-261

tions, the variance measured is the statistical uncertainty of a single measurement of duration262

Ts. Therefore, and this is a very important point, from each measurement only a single263

sub-interval of duration Ts was analyzed through all three methods (the same264

sub interval). This captures the usual situation, namely that an uncertainty estimate is265

needed for a single period.266

267

Table 2 below shows the duration Ts and the number of repetitions for each sample:268

Table 2: Measurement duration Ts and the number of repetitions for each269

sample.270

9



Sample CBNM61 CBNM70 CBNM84 CBNM93
Ts[min] 10 10 3 10

number of 41 32 39 101
repetitions

271

To summarize this section, we give three concluding remarks:272

1. The reference value for the variance is, in a sense, the best estimate possible. It273

is explicitly the statistical variance (of both the moments and the mass) of a NMC274

measurement.275

2. The estimated uncertainties evaluated through the different methods does not ”see”276

the entire measurement, only the sub-interval of duration Ts analyzed.277

3. The uncertainty on the reference value is not always negligible. Assuming that the278

sampled variance has a normal distribution, we can approximate the 1σ uncertainty279

with 1/
√

2(N − 1), where N is the number of sub measurements. This gives an 11%280

error bar for CBNM61, 13% for CBNM 70, 12% for CBNM84 and 7% for CBNM93.281

5 Experimental results282

5.1 Full implementation on all samples283

In this section, the results of a full implementation of all three methods are given. Before the284

results are described, one technical remark: As described earlier, a full implementation of the285

method requires a numeric evaluation of the partial derivatives of Fi(S, U,ML), (i = 1, 2, 3).286

Theoretically, this can be done be computing the partial derivatives symbolically, and then287

inserting the computed values of S, U and ML. To simplify the computation, we computed288

the derivatives numerically, by taking an incrementation of 0.01% to each of the values, and289

used the central approximation for the derivative :290

df

dx
|x0 ≈

f(x0 + δx)− f(x0 − δx)
2δx

The full results, in terms of the statistical uncertainty on each sampled moment (and the291

mass) are presented in tables 3-6 below:292

Table 3: Results for sample CBNM 61293

Method σE σV ar σSk ∆mass[g]
SACD (I) 2.59× 10−4 4.69× 10−4 1.5× 10−3 0.0122
PVM (II) 2.62× 10−4 4.89× 10−4 1.5× 10−3 0.0180
BS (III) 2.17× 10−4 4.23× 10−4 1.57× 10−3 0.0175
reference 3.04× 10−4 5.36× 10−4 1.4× 10−3 0.0182

294

Table 4: Results for sample CBNM 70295

Method σE σV ar σSk ∆mass[g]
SACD (I) 1.85× 10−4 3.49× 10−4 1.2× 10−3 0.0135
PVM (II) 2.19× 10−4 4.00× 10−4 1.3× 10−3 0.0134
BS (III) 2.3× 10−4 4.27× 10−4 1.2× 10−3 0.0138
reference 2.86× 10−4 5.45× 10−4 1.81× 10−3 0.0121

296
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Table 5: Results for sample CBNM 83297

Method σE σV ar σSk ∆mass[g]
SACD (I) 2.82× 10−4 5.11× 10−4 1.6× 10−3 0.0180
PVM (II) 2.41× 10−4 4.69× 10−4 1.6× 10−3 0.0191
BS (III) 2.36× 10−4 4.74× 10−4 1.6× 10−3 0.0223
reference 2.77× 10−4 4.93× 10−4 1.46× 10−3 0.0201

298

Table 6: Results for sample CBNM 93299

Method σE σV ar σSk ∆mass[g]
SACD (I) 1.11× 10−4 2.19× 10−4 6.52× 10−4 0.0060
PVM (II) 0.92× 10−4 1.73× 10−4 5.74× 10−4 0.0061
BS (III) 1.08× 10−4 1.95× 10−4 6.04× 10−4 0.0058
reference 1.29× 10−4 0.22× 10−4 0.62× 10−4 0.0065

300

The results, in terms of the estimated relative error of the mass for all four samples (and all301

three methods) are given in table 7 below:302

Table 7: relative error of the mass estimation in all three methods303

Sample Reference Method I Method II Method III
Sample (repetition) (SACD) (PVM) (BS)

CBNM 61 1% 0.6% 0.9% 0.9%
CBNM 70 1% 0.5% 1.1% 1.1%
CBNM 84 2.6% 2.4% 2.5% 2.8%
CBNM 93 1.9% 1.7% 1.7% 1.7%

304

From table 7, methods (II) and (III) have similar results, with a maximal error of about 20%305

in σmass compared to the reference value (translating into 0.2% in terms of the relative error).306

Since the uncertainty of the reference value is roughly 10% (see final remark of section 4.2),307

it is safe to state both methods performed fairly well.308

The estimates obtained by the first method are slightly biased, with a maximal error of about309

50% (translating to 0.5% in mass). It is worth mentioning that all the estimates obtained310

using the first method (SACD) are under estimates (with respect to the reference value).311

Finally, we have repeated method (I), but now with computing the mass for each sub-312

measurement, and directly estimating the uncertainty of the mass. For samples CBNM 93313

and CBNM 61, results were very similar (0.9% 1.3% respectively). for sample CBNM 70 the314

uncertainty was estimated by 1.7%, which is considerably larger than the reference value-315

although all values of ML were larger than 1. For sample CBNM 84, about 30% of the sub-316

interval resulted with a value of ML < 1, and the uncertainty estimation was approximately317

5%, almost twice as low as the reference value.318

5.2 Statistical uncertainty for longer measurements319

Although the results so far demonstrate equivalent results between all three methods and320

the reference values, they all share one short coming: the total measurement time for which321

the results were presented were in the range of 3-10 minutes- all well below the typical oper-322

ational measurements. In the relevant masses, a typical measurement would be around 0.5323

11



hours. However, in a 30 min. measurement, we wold need a minimal measurement of 16324

hours to create a reference value (estimated with the classic number of 30 samples). Looking325

at table 2, the only measurement that was long enough was for CBNM93.326

327

Therfore, to estimate the methods in a period of 30 min., a different approach was taken.328

In general, we expect the the statistical error, as a function of the measurement time T ,329

would be proportional to 1/
√
T . We have repeated the statistical uncertainty analysis for330

all four samples in all three methods, for 20 min. and 30. min. measurements. The results331

are presented in figures 2 - 5.332

333

Figure 2: Estimated statistical uncertainty for sample CBNM61.

Figure 3: Estimated statistical uncertainty for sample CBNM70.
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Figure 4: Estimated statistical uncertainty for sample CBNM84.

Figure 5: Estimated statistical uncertainty for sample CBNM93.

As we can see, the fit to a 1/
√
T functional form is well within a 10% error, and the334

discrepancy between the three methods is as in the previous section: all less the 0.4% in the335

sample mass.336

6 Summary and concluding remarks337

A comparison among three approaches for estimating the statistical uncertainty in NMC338

was introduced: The bootstrap method, propagation of variance through moments and sta-339

tistical analysis of cycle data.340
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The purpose of the study is to define and validate simple schemes, which, we believe, may341

serve as guidelines for estimating the statistical uncertainty in the NMC measurement.342

For that purpose, once the methods were presented, we compared the results using a set343

of 4 different Pu samples (all with the same geometry an total mass of Pu, differing only344

in the isotopic composition), measured on a PSMC well counter at the JRC laboratory, in345

Ispra, Italy. The assay was based on inverting point model equations. The similarity of346

the measurement items geometry minimizes model bias across the data set, while the dif-347

ferences between the samples are sufficient to allow practical conclusions. The outcome of348

each method was compared to a reference value, obtained by a brute force measurement of349

the statistical uncertainty.350

351

As a general note, looking at table 7, we see that all three methods produce good results.352

The last two resulted in a maximal error of about 20% in σmass (translating into 0.2% in353

terms of the relative error), while the uncertainty on the refernce value was about 10% .The354

maximal error in the SACD is 50% in σmass (translating to 0.5% in the relative error). .355

Therefore, the results presented here suggest methods (II) and (III) as operational methods.356

From a technical view point, all three methods are very simple to implement, and do not357

demand considerable computation resources. Still, we add a remark on implementation of358

the bootstrap method: As defined in [13] and [6], implementation of the bootstrap method359

requires random shuffling with replacement of the original data. As an alternative, we can360

compute the central moments (or Singles, Doubles and Triples rate), and then shuffle the361

moments. Computing the moments of the count rate distribution is by far the ”bottle neck”362

from a run time point of view, typically taking of the order of seconds (in the present study,363

about 10-20 sec. for all samples). While this is acceptable in terms of a single measurement,364

when repeated 300 times to build the bootstrap distribution, this might accumulate to a365

long run time. Because in the second method the moments are only computed once (and366

the run time of the shuffle is negligible), the second method reduces the run time dramatically.367
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A Appendix A: Explicit formulas for the standard de-421

viation of the sampled variance and skewness422

In the following section we denote by Mj the jth moment of a distribution:423

Mj = E(Xj) =
∞∑

n=1

pnn
j

Using the above notation, equation 3.3 can be written as:424

V ar(V ar(X)) = M4 − 4M1M3 + 8M2
1M2 − 4M4

1 −M2
2

and equation 3.4 as425

V ar(Sk(X)) = M6−6M5M1+15M4M
2
1−20M3M

3
1 +15M2M

4
1−5M6

1−(M3−3M2M1+2M3
1 )2

Equivalent terms for the factorial moments are given:426

V ar(X(X − 1)) = M4 −M2
1 + 2M1M2 + (1 +M1)(M2 − 2M3)

427

V ar(X(X − 1)(X − 2)) = M6 − 6M5 + 13M4 − (2M1 − 4M2 +M3)
2 − 12M3 + 4M2

From a sampling point of view, denoting by nj the number of detection in the j gate, Mj428

can be sampled in two distinct manners: First, if we denote by fn the number of gates for429

which nj = n detections, then pn ≡ fn/
∑

k fk, and then Mj is sampled by430

Mj ≡
∞∑

n=0

nj × fn∑
k fk

This form makes it clear the pn is not a theoretical probability distribution but rather an431

experimentally based quantity.432

Another option, since N >> 1 (here N is the total number of gates), we can estimate Mj433

via434

Mj ≡
1

N

N∑

k=1

njk
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