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Abstract

Radioluminescent emission in Ar, N2, O2, and dry air at P=1 atm was observed

induced by 5 MeV α particles. The wavelength range with a single detector

spanned 250–1100 nm, extending the range well into the UV and IR bands with

a single detector. Measured spectral lines for alpha-induced luminescence were

corrected for detector transmission and intensities compared to previous work.

The exploration of multiple gases over a wide frequency range opens the door

to security and remote sensing applications, where different environments are

routinely encountered. This work provides spectra that can be used in guiding

future filter development focusing on remote alpha detection.

Keywords: Radioluminescence, Air fluorescence, Imaging of alpha emitters,

Optical detection of alpha emitters, Stand-off detection of alpha emitters

1. Introduction

Luminescence of gases occurs when charged particles transfer their kinetic

energy to secondary electrons in a collision. These gas molecules are excited and,

upon de-excitation, emit photons with energies corresponding to characteristic

electron transitions. In air, the primary molecules excited are N2 molecules [1].5

Induced luminescence can be due to different types of ionizing radiation. For

example, extensive air shower cosmic rays produce luminescence in air in the
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300–430 nm range and experiments done with electron beams of similar energies

have found nearly all of the luminescence was from de-excitations in N2 [2, 3, 4].

Because alpha particles have a short range in gas, they are difficult to detect10

directly at ranges greater than ∼10 cm. However, photons from alpha-induced

luminescence can be detected from a larger distance as the photon mean-free-

path in gases at 1 atm is much larger. The alpha-induced luminescence photons

have a range of wavelengths spanning the UV to the IR spectrum [5, 6, 7, 8].

It was found that the light intensity scales with total alpha energy loss in air,15

with 19 ± 3 photons per MeV for 45% humidity [7, 6].

A significant amount of work has been done with remote detection of alpha-

induced luminescence [9, 5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 6, 21,

22, 23, 7, 24]. Luminescence imaging was done with UV-sensitive film, charge-

coupled device (CCD) cameras, intensified CCD cameras, electron-multiplying20

CCD cameras, and PMTs used as pixels. Many of these results consist of a

superimposed image with the UV alpha-induced luminescent light taken in an

otherwise dark environment on an image taken in normal lighting to show the

range of luminescence from alpha particles and the possibility of detecting alpha

particles remotely. Because of the difficulty involved in the production of images25

in dark environments for nuclear safety, security, and safeguards applications,

developing an imaging system that can handle regular room-lighting conditions

is desirable. This can be done by applying custom filters to maximize the

radioluminescent light and minimize background light.

Further progress toward practical detection of alpha radiation in air requires30

detailed study of the induced light. Optical filtering has been used to suppress

background light in order to improve the signal-to-background ratio, necessary

in any useful detector system [22, 24]. Prior work has resulted in the spectra of

emitted light from electrons losing energy in air [2, 3, 4], as well as published

data on the wavelength dependence of alpha-induced radioluminescence in air35

[25, 26, 5, 16, 7] and specific gases like nitrogen and the noble gases [27, 28, 8, 29].

However, little quantitative data over a comprehensive range of wavelengths

and gases exists because these spectra are published as images of photographic
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plates. Quantitative results can be found for air [5, 16, 7] and argon [28]. Some

data [7] give quantitative results in the deep UV (below 300 nm) for air as40

well as a low resolution study of the alpha-luminescence spectrum in argon [28].

A careful measurement of alpha-induced luminescence in various gases can be

used to optimize filter designs for various environments. In this work, the photon

spectra from 5 MeV alpha particles in N2, O2, Ar, and air were studied.

2. Experimental Method45

To measure the alpha-induced luminescent spectrum, a High Voltage En-

gineering Corporation 6-MV model EN tandem Van de Graaff accelerator at

Western Michigan University was used to produce a 56 nA beam of 7.5 MeV

alpha particles with a beam diameter of 4.7 mm. The beam intensity was

1.75 × 1011 alpha particles/second. The alpha-particles were incident on a 2550

µm-thick 100HN Kapton Polyimide film window into a dark pressure cham-

ber. Calculations using the Stopping and Range of Ions in Matter (SRIM)

code showed the alpha particles to have an average of 5.0 MeV after passing

through the window [30]. The chamber was filled with the different available

gasses and kept constantly pressurized at 1 atm. Individual runs for a partic-55

ular gas were done in which 5 MeV α-particles were incident in the chamber

from the accelerator beam. Because this work presents a practical application

for security purposes, for example, the remote sensing of alpha-emitting sources

in gas hoods, 5 MeV α particles, roughly the energy of emitted alphas from

fission chain decay, were chosen for the initial test. Switching between gases60

was done by evacuating the chamber completely, flushing fill lines with the new

gas, evacuating the chamber again, and filling the chamber with gas.

For each gas, data were taken with the UV-optimized optical setup shown

in Figure 1. The setup consisted of two parabolic mirrors. One mirror reflected

the light emitted from the gas into a second mirror, which focused the light into65

an optical fiber1. All of these components were housed within the chamber, so

1The setup included a MPD129-F01 mirror, RC12SMA-F01 collimator, M92L02 200 µm

3



 

 

 

alpha beam 

vacuum 

Kapton 

window 

off-axis 

parabolic 

mirrors 

optical fiber 

fiber feed-thru 

 second fiber 

to spectrometer 

LED placed here 

  to align optics 

luminescence 

Figure 1: Diagram of the optical setup used for this experiment showing the parabolic mirrors,

optical fibers, chamber feedthrough, and spectrometer (Not to scale).
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Figure 2: Quantum Efficiency of the AvaSpec-ULS2048L StarLine Versatile Fiber Optic Spec-

trometer’s CCD is shown along with spectrometer’s grating efficiency [31].

the only external components were a fiber to a spectrometer. The optics setup

was sensitive in the 250–1100 nm range, limited by the transmission properties

of the optical components used.

An AvaSpec-ULS2048L StarLine Versatile Fiber Optic Spectrometer [31],70

optimized for UV-light collection with a range of 200–1100 nm, was used to take

the intensity vs wavelength data from the light emitted from the interactions

between the alpha particles and the gas. This spectrometer is a charge coupled

device (CCD) linear array with 2048 pixels, and the optical bench is a ULS

Symmetrical Czerny-Turner with a 75 mm focal length. With a grating of 30075

lines/mm and a slit size of 50 µm, the resolution of the spectrometer is 2.3 nm.

The quantum efficiency for the CCD and the grating efficiency are shown in

Figure 2.

For most configurations, 10 runs of 4-second integration times were taken to

prevent saturation from a single long run. For runs with lower light emission,80

the integration time was increased. To align the optics, an LED light was placed

at the focal point of the second parabolic mirror (see Figure 1). This created

0.22 NA fiber, and V2H6S 600 µm 0.22 NA feed-through were used.
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a point at the object position of the setup. The optics stage with the mounted

parabolic mirrors within the chamber was then adjusted to minimize the spot

diameter from the LED. For this experiment, the object of the optical setup85

was taken to be the entry point of the beam in the chamber, found using film

at the chamber beam entry port.

3. Transmission Measurements

To determine the transmission of the optical setup ideally, a light source

transmitting through the entire range of the spectrometer would be used, and90

two spectra would be taken with this source: one with the mirrors, fibers, and

feedthrough in place, and one without them (i.e. with the source shining directly

into the spectrometer). However, a light source transmitting through the entire

range of the spectrometer was unavailable. Instead, three light sources were

used to obtain the transmission, each for a different range of wavelengths. A95

UV-Tool Shortwave Ultraviolet Flashlight was used to calculate transmission

for the 250–380 nm range; a xenon arc lamp in a Solar Light Model XPS 400

power supply was used to calculate transmission in the 380–750 nm range; and

the sun was used to calculate transmission in the 750–1100 nm range.

The UV flashlight had a fluorescent bulb producing well-defined peaks at 254,100

314, 366, and 405 nm. Before the spectrum with the optics was compared to the

spectrum without the optics, both spectra were normalized to the spectrometer’s

internal LEDs. The peaks obtained using the optics were divided by the peaks

obtained without the optics in place to find transmission values for these points.

A fit line was obtained for these individual points to interpolate transmission105

values for the wavelength range of 250–380 nm.

For the 380–750 nm range, a xenon arc lamp was used, but because of the arc

lamp’s high intensity, the beam of light was collimated with a pinhole. In order

to stitch the 250–380 nm transmission spectrum from the UV flashlight to the

380–750 nm transmission spectrum from the xenon arc lamp, the transmission in110

the 330–380 nm range was averaged and ratioed for the two spectra. Multiplying
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the UV flashlight spectrum by this ratio, the transmission values in the UV

flashlight spectrum were now relative to the transmission values in the xenon

spectrum.

In the same way, the spectrum for the sun in the 750–1100 nm range was115

used for the transmission spectrum, with the 750–800 nm region being used to

normalize the transmission values at the higher wavelengths from the sun to the

midlength wavelengths from the xenon transmission measurement.

The entire transmission spectrum is shown in Figure 3.
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Figure 3: Relative transmission for the UV optical setup as a function of wavelength.

4. Analysis120

There are eight internal LEDs in the spectrometer; these were enabled for

the entire experiment and produce light at well-defined wavelengths of 211.7,

248.7, 365.5, 442.0, 612.6, 791.7, 936.6, and 1059.4 nm. Over the course of

the experiment, these peaks did not shift, indicating that the spectrometer was

very stable during the experiment to within the spectrometer digital resolution,125

corresponding to a bin width in the data of 0.6 nm. Because of this, runs with

the same configuration (i.e. beam on/off and type of gas) were summed together

successfully for better statistics.

LED calibration peaks were removed by subtracting the beam-off runs from
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the beam-on runs; this also accounted for background reduction from random130

noise and any other light sources. In some of the beam-off runs, the LED

peaks were saturated. This was corrected for by scaling the saturated peaks

before performing the subtraction (these scale factors were found by comparing

saturated and unsaturated runs). Additionally, the beam-off and beam-on runs

were scaled to unsaturated LED peaks before the subtraction occurred. After135

the background subtraction, shown in Figure 4 the data were scaled according

to the relative optical transmission in Figure 3. Data were then normalized

to the wavelength-dependent spectrometer sensitivity, provided by Avantes and

shown in Figure 2.

5. Results140

Spectra were found for alpha-induced luminescence in air, nitrogen, oxygen,

and argon. The spectra for oxygen did not show any appreciable luminescence.

We observed that while emission lines in N2 were primarily in the 230–430 nm

range, emission lines in air were mostly between 290–430 nm. Possible oxygen

quenching in air is observed [32] as a deficiency of expected nitrogen lines in145

the 230–290 nm range. Several of the lines for the Ar spectra corresponding to

emission lines found by Norlén (1973) have also been confirmed [33].

Spectra for N2 are shown in Figure 4. This figure shows raw spectra, back-

ground spectra (beam off run), and the spectrum with the background sub-

tracted.150

Transmission-corrected spectra are shown in Figure 5 for Ar, O2, and N2,

the latter both on- and off-axis. For the N2 spectra, the intensity in the region

below 290 nm differs between the on- and off-axis runs. It is thought that the

increase in intensity is likely caused by molecular NO excitations (Gamma bands

from 200-270 nm and Delta bands from 200-240 nm [34], noted in Figure 5b)155

as the beam enters the plastic window of the detector, though this has yet to

be confirmed with certainty. The reasoning is that the presumed NO lines in

the off-axis runs have a higher relative intensity than for the on-axis runs. The
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Figure 4: N2 raw spectra (a) shown for a 140-second run. The background spectrum from a

40-second run is scaled (b) before subtraction (c).
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optical setup in the off-axis runs are focused on the beam entry point in the

chamber. At this point, only photons produced at the chamber entry are focused160

into the optical setup. However, for the beam on-axis runs, all photons traveling

parallel to the beam direction, including those produced at the Bragg peak, are

focused into the optical setup. It is expected that the presumed NO lines are

from the chamber window and light producing these lines are produced in or

near the chamber window. Thus, when the optics are focused on the chamber165

window, a larger proportion of light from NO is expected, whereas, when the

optics are on-axis, a larger proportion of light produced at the Bragg peak is

expected.

Transmission-corrected spectra for air are shown in Figure 6. The UV-vis re-

gion of 300–400 nm shows the results of this work as well as detector-uncorrected170

data from alpha-induced luminescence [7] and electron-induced luminescence [3].

6. Conclusions

Alpha-induced luminescence measurements of nitrogen, oxygen, argon, and

air emission lines from 5 MeV alpha particles were made. For air, N2, and Ar, we

found 12, 16, and 18 dominant lines respectively in the spectral ranges 270–430175

nm, 230–430 nm, and 690–970 nm. Spectra were background-subtracted and

corrected for transmission and detector efficiency. Evidence of oxygen-quenching

was found, and it was determined that argon had little effect on the luminescence

in air, but a strong signature in the near infrared region, as expected [8, 35].

Measurements of alpha-induced luminescence could reduce background while180

maximizing signal by using a narrow band filter corresponding to the strongest

emission peaks for each gas.

For air, the spectral range was extended below that of previous electron-

induced luminescent spectra [3] to the deep UV range. Because natural back-

ground in the deep UV is low, detectors may be optimized to collect this signal.185

Additionally, these spectra show that in situations where feasible using a nitro-

gen purge gas would greatly reduce the effect of oxygen quenching the NO lines,

10



(a) N2 (b) N2 with on-axis mirror
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Figure 5: Transmission-corrected alpha-induced luminescence spectra for N2, Ar, and O2. N2

spectra are normalized to the 337 nm peak and the delta and gamma bands are noted Figure

5(b). The Ar spectrum is normalized to the tallest peak at 312 nm. The O2 spectrum shows

no useable lines for measuring alpha-induced luminescence.
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Figure 6: Transmission-corrected alpha-induced luminescence spectra for air in the UV-VIS

region (top) and deep UV (bottom). This work is shown in solid black, alpha-induced lumi-

nescent data from [7] are shown in dashed red, and electron-induced luminescent data from

[3] are shown in dotted blue. All spectra are normalized to the N2 337 nm peak.
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raising signal intensity without affecting the light background.

To date there have been few experiments with filters to maximize light col-

lection, while minimizing background. Baschenko [5] used an optical glass filter190

with 60% transparency in the 300–400 nm range to maximize signal collection,

Inrig, et al. [15] used a customized UG-11 filter, and Sand, et al. [7, 21, 22] found

stacks of various Semrock single interference filters could be used to improve the

signal-to-background ratio. Lakis, et al. studied various filters, including com-

binations of Semrock filters with KG1 colored glass [24]. Chroma filters and a195

Channel Systems custom filter both offer decent transmission with good visible

light blocking. Transmission of leaded glass and plexiglass were also studied.

The current state is a call for custom filters to reduce transmission in the visi-

ble light spectrum and increase transmission in the alpha-induced luminescence

region. No studies have been done yet to optimize filters for pure gas environ-200

ments like N2 and Ar. Spectra from this work can be used to optimize filters or

determine operating parameters.

In addition to effects from filtering, future work may focus on the pres-

sure dependence for alpha-induced luminescence yields or for other gases. In

particular, photon intensity depends on the gas and composition, with some205

gases having an increased yield [36]. This presents the possibility of optimizing

the detector-gas system for specific applications. This would include exploring

yields for various particles at various energies and for various wavelengths.
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