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Terminal Learning Objectives

• Terminal Learning Objectives 
– Introduce the assay methods for plutonium measurements using the 

HLNC.
– Introduce the assay method for bulk uranium measurements using the 

AWCC.
– Introduce the assay method for fuel assembly measurements using the 

UNCL.
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Enabling Learning Objectives

• Enabling Learning Objectives:
– Review the processes that generate neutrons
– Describe the concept of 240Pueff mass
– Describe the design of the HLNC
– Illustrate the passive calibration curve and known alpha analysis methods
– Describe the design and operation modes of the AWCC
– Show the active calibration curve analysis methods
– Describe the design and operation principles of the UNCL
– Discuss the analysis method for assay of fuel assemblies 
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Neutron Origins and Signatures - Summary
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Plutonium Mass and 240Pueff mass

Most spontaneous fission in Pu is from 240Pu, so we work in terms of  240Pueff 

To determine the total Pu mass from the 240Pueff mass returned from neutron 
assay, the item isotopic values need to be known
Example: 200g 240Pueff with 238Pu =2%, 240Pu=24%, 242Pu=6%
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High-Level Neutron Coincidence Counter (HLNC)

3He TUBES (18)

JUNCTION BOX
SHIELD PLANE

JUNCTION BOX

Cd LINERS

POLYETHYLENE

41.0
68.2 cm

ALUMINIUM
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17.5

ELECTRONICS

POLYETHYLENE

3He TUBES (18)

Sample Well

Cd LINER

• ε = 17.5%
• τ = 43 µs
• 18 detector tubes: 4-atm 

3He, 50.8-cm active-length, 
φ2.54cm 

• 6 Amptek preamplifiers
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Calibration Curve Method

240Pueff mass (g)
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The calibration is dependent 
on:

• Material type
• Geometry
• Density
• Impurities (high M items)

Measure a series of representative standards to relate the measured doubles rate 
to the 240Pueff mass
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Known Alpha Analysis Method

Use singles and doubles to deduce a “multiplication” correction that linearizes  the 
calibration.  Works well for pure oxides, metals,  and fluorides. Still need standards.

The calibration is dependent on:
• Known material type
• Isotopic values

This technique does not 
work for impure items.
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Known-Alpha Analysis Method - Details 

1. Calculate alpha from the Pu isotopics and known yields values (PANDA eq. 16-35)
2. Combine the S and D point model equations to obtain:

3. Use the quadratic formula to solve for M
4. Determine the multiplication corrected Doubles:

𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

𝑀𝑀𝐷𝐷/𝑆𝑆(1+𝛼𝛼)
𝜌𝜌0

5. Plot a linear calibration “curve” with Dmult corr vs. 240Pueff

K(1+α)M2 – (K(1+α)-1)M – (D/S)(1+α)/ ρ0 = 0 

K = νs1νi2/νs2( νi1-1) = 2.166

ρ0 = Do/So×(1+αο) ρ0 is treated as a detector parameter

Nuclear data
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Passive Coincidence Counting
Data Analysis Example
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Pure oxide     α = 0.525 
(for this isotopic 
composition)

HLNC Measurement:
Singles = 26176 cps
Doubles = 2434 cps

From Calibration Curve:
D = 2434cps     m = 92g

Known-α Analysis:
HLNC   ρ0 = 0.103
Solve for M = 1.08
Calculate DMult Corr = 1634 cps
From Known-α curve, m = 92g

Which method is “best”?
Known-α can only be applied when the item alpha-value can be reliably calculated (eg. pure Pu oxide), and 
works even if the item multiplication does not follow the passive calibration curve trend. For example:

- Calibrate on short-fat cans of oxide
• Assay on tall-thin cylinders (cal curve fails, K-α works)
• Assay on stacked short-fat cans (cal curve fails, K-α works)

Pu oxide   Declared Mass 240Pueff = 92 g
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The Problem with Standard Coincidence 
Counting

• There are 3 principal unknowns in neutron counting:

• 240Pu-effective mass, α, and M.

• Standard Coincidence Counting provides only 2 pieces of measured 
information, singles and doubles (or totals and coincidences).  To obtain an 
accurate assay, one must know a lot about the item.

• If the assumed information is not correct, large errors can occur.

• In Neutron Multiplicity Counting, 3 pieces of measured information are 
used with a mathematical model to deduce an assay that is far superior for 
most impure materials.
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Active Well Coincidence Counter (AWCC) -
Design

• Assay range of few gram to several kg of 235U 
(metal, oxide, …)

• Designed in 1984 (Mod II) 
• Can be used in passive or active (thermal and fast) 

modes
• Portable
• Good efficiency – 42 3He tubes
• Uses 2 Americium-Lithium (AmLi) sources for 

uniform interrogation
• Several cavity configurations for optimization of 

performance



15

AWCC - Drawing
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AmLi Interrogation Source
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Why use AmLi source to induce fissions?

• AmLi produces random neutrons.  Will not interfere with the coincidence signal from 
induced fission in 235U.

• AmLi has a low energy spectrum and will only induce fissions on 235U (not 238U).

Plot of the 
induced fission 
cross section of 
235U and 238U
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AmLi spectrum and Fission Cross Sections

AmLi neutron 
spectrum overlaid 
on uranium fission 
cross section plot

Only 3% of AmLi
neutrons have 
energy > 1.5MeV
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AWCC Fast Modes

Mode F0 Mode F4

• Cd present
• Nickel Ring
• Interrogation with fast 

neutrons
• 5 modes of operation 

for different container 
sizes

• Optimum for medium to 
large mass items
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AWCC - Fast Mode Calibration

Sample calibration curve for mode F0 operation
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AWCC Thermal Modes

Mode T0 Mode T4

• No Cd present
• No Nickel Ring
• Interrogation with 

thermal neutrons
• 5 modes of operation 

for different 
container sizes

• Optimum for small 
mass items
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AWCC Comparison of Fast and Thermal Modes

Fast Mode Thermal Mode

Cadmium 
Present Yes No

AmLi Item 
Interrogation Entire Volume Surface Layer

Optimum Mass 
Range

Medium to 
Large

Small
Hydrogenous
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AWCC Summary

• AWCC utilizes the following physics:
• Active-mode interrogation to determine fissile content
• AmLi source neutrons produce no Doubles
• AmLi source energy is below 238U fission threshold

• Two Modes of Operation:
• “Thermal Mode” - better statistics, good for small and hydrogenous samples, 

BUT vulnerable to self-shielding and thermal neutron poisons,
• “Fast Mode” – longer counting times, good for larger samples, and less 

sensitive to thermal poisons
• Make sure calibration curve is for the correct mode and material type
• (AWCC used for Uranium Assay and can be used in passive mode for Pu/MOX 

measurement)
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Uranium Neutron Collar (UNCL) Design

• Same principle of operation as AWCC but designed for the 
verification of fresh fuel assemblies (BWR and PWR)

• The UNCL-II was designed in 1989
• Uses 16 3He tubes
• Cd and no Cd modes
• Response cross-calibrated to an absolute calibration curve
• Different calibration curves for BWR and PWR
• Uses one AmLi interrogation source

For complete details of the collar operation and calibration procedures refer to 
report LA-11965-MS “Neutron Collar Calibration and Evaluation for Assay of 
LWR Fuel Assemblies Containing Burnable Neutron Absorbers”
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UNCL - Drawing

• 16 3He tubes
• Lift-out door
• Uses one AmLi source
• Polyethylene body
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UNCL Neutron Collar (PWR)

3He 
tubes

PWR fuel 
assembly

AmLi 
source

polyethylene
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UNCL – Basic Principles

• AmLi neutrons are (alpha,n) neutrons – no Doubles from source
• AmLi neutrons induce fissions in 235U, giving Doubles
• Average AmLi neutron energy ~0.5 MeV (below fission threshold 

for 238U)
• Interrogation flux gets less farther from source (fission neutron 

spread throughout assembly)
• Detection efficiency increases farther from source
•  Net result is that the detector responds equally to all pins in the 

assembly
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UNCL Response Adjustments

• k0 – AmLi source strength
• k1 – Normalization
• k2 – Detector efficiency
• k3 – Burnable poison
• k4 – Heavy metal loading
• k5 – Other conditions
• RM – Measured response

( ) MRkkkkkkR 543210=

By adjusting the measured response we can use the absolute calibration curves 
for all collar detectors.
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UNCL calibration curve

Calibration curve for BWR fuel (thermal mode)
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UNCL Burnable Poisons

• Burnable poisons are thermal neutron absorbers used to extend the life 
of fuel assemblies in reactors (allows greater initial enrichment)

• A correction is needed - based on number of poison rods (and type)
• Correction is small for fast (Cd liner) mode because thermal neutrons 

are excluded - measurement time ~1 hour
• Correction larger for Thermal mode (no Cd liners) - measurement time 

~10 mins
• (Measurements with and without Cd can verify burnable poison 

declaration)
• Euratom Fast Collar designed for fast (Cd liner) mode but short 

measurement time ~15 minutes
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Neutron NDA Summary

• The mass of items of Special Nuclear Material SNM (Pu, U) can 
be measured by detecting the neutron emission.

• Different neutron source mechanisms (spontaneous fission, 
(alpha,n) and induced fission) can be distinguished by 
coincidence counting.

• Passive measurements are used for Pu with a couple of different 
analysis methods (“Difficult-to-measure” items need multiplicity 
counting)

• Different detectors accommodate different item sizes and shapes
• Active methods use an external source to induce fission (in 235U)
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