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Context, Science, and Technology



International Safeguards
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• “Delivering Effective Nuclear 
Verification for World Peace”

• The objective of safeguards is 
the timely detection of diversion 
of significant quantities of 
nuclear material from peaceful 
nuclear activities to the 
manufacture of nuclear 
weapons 

• Inspect nuclear facilities 
worldwide, monitor amounts of 
nuclear materials to ensure that 
it isn’t going to illicit uses

worldwide, monitor amounts of 
nuclear materials to ensure that it isn’t 
going to illicit uses

NRC.gov



The IAEA Today
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Currently, the IAEA is working to achieve….

• Universal acceptance of the AP
• Integrated safeguards

– Non-discriminatory and tailored to specific facility 
types

• Safeguards-by-design
– Integrated within a facility’s design, covering 

safeguards and security
• Unattended monitoring & data integration

– Robust data management systems to reduce on-
site inspector presence

• State-level concept/approach
– Assessing each State as a whole

Source(s): 
http://www.iaea.org/safeguards/statements-

repository/overview.html
http://www.iaea.org/safeguards/documents/LongTerm_Stra

tegic_Plan_%2820122023%29-Summary.pdf

http://www.iaea.org/safeguards/statements-repository/overview.html
http://www.iaea.org/safeguards/documents/LongTerm_Strategic_Plan_(20122023)-Summary.pdf


Special Nuclear Materials
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• What are we trying to verify?
– Special nuclear material (SNM) is where it should 

be, and in the proper amount

• SNM: Nuclear materials that can be used to 
make a weapon
– Highly Enriched Uranium (HEU)

• Diversion path for HEU: enrichment facilities
• Certain isotopes of U undergo fission primarily when induced with a 

neutron source
– Weapons Grade Plutonium (Pu)

• Diversion path for Pu: spent fuel (repositories, interim storage, 
reprocessing facilities)

• Certain isotopes of Pu undergo fission spontaneously, without any 
prompting

Weapons Grade Pu clad in Stainless Steel and 
surrounded by a Tungsten Reflector

Fission



Nondestructive Assay (NDA)
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• NDA is the most commonly employed technique for material accountancy
• A series of gamma or neutron detectors are typically used to measure 

radiation emitted from the sample of interest
• Energy, timing, and intensity of radiation may be correlated to isotope type 

and quantity in the sample

Rail radiation portal monitor (RPM) at the Port of
Antwerp, Belgium

• Passive interrogation requires good
signal intrinsic to sample (240Pu, 252Cf)

• Active interrogation requires fissile
material or material prime for gamma
interactions (235U, 239Pu)

Passive: 
No external source

Active: 
Neutrons or gammas 

irradiate source to 
magnify signal

SampleSample

n, γ



Neutrons and Photons
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– Spontaneous and induced fission
– (α,n)
– Cosmic rays
– (p,n)
– (n,2n)
– (γ,n)

Time and correlations

Low Z material

3He, Scintillators, fission 
chambers

Less common

– Nucleus (gamma-ray)
– Nuclear collision (gamma-ray)
– Electron cloud (x-ray)

Energy

High Z material

HPGe, Scintillators, NaI

Neutrons Photons



Neutrons
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History of Neutron Counting
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• TOTAL NEUTRON
– Record the total number of neutrons detected in a certain amount of time
– Accurate assays can be obtained only for very few types of SNM

• COINCIDENCE COUNTING
– Record the number of times two neutrons arrive within a set time window (gate)
– Wide application for international safeguards

• focused on verifying declared materials 

• NEUTRON MULTIPLICITY COUNTING
– Extension of neutron coincidence counting  
– Record the number of times we detect 2, 3, 4, etc. neutrons within a gate
– It improves neutron assay accuracy  dramatically by adding more measured 

information



Passive Neutron Counter
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Fissioning
Source

3He neutron detectors

Pulse-processing Electronics

Multiplicity information is used to 
calculate the mass of fissioning
isotopes

Fissioning source surrounded by 
neutron detectors

Emission of multiple prompt
neutrons from fission detected 
as coincident neutron events



Neutron Coincidence Counting
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Detected 
Neutrons

Spontaneous 
Fission

Time

• As neutrons are detected, they trigger the shift register and 
neutron coincidence counting is performed



Neutron Coincidence Counting
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Detected 
Neutrons

Time



Neutron Coincidence Counting
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• First neutron detection triggers the shift register

Singles:
Doubles:

TRIGGER

Shift Register

Pre-delay     Gate



Neutron Coincidence Counting 
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• First neutron detection triggers the shift register

Singles:
Doubles:

TRIGGER

• Next neutron detection triggers the shift register again; this time, one 
neutron is already in the shift register, so we have one coincidence

Shift Register

Pre-delay     Gate



Neutron Coincidence Counting 
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• First neutron detection triggers the shift register

Singles:
Doubles:

TRIGGER

• Next neutron detection triggers the shift register again; this time, one 
neutron is already in the shift register, so we have one coincidence

• Next neutron detection triggers the shift register again; this time, two 
neutrons are already in the shift register, so we have two coincidences

Shift Register

Pre-delay     Gate



Neutron Coincidence Counting 
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• First neutron detection triggers the shift register

Singles:
Doubles:

TRIGGER

• Next neutron detection triggers the shift register again; this time, one 
neutron is already in the shift register, so we have one coincidence

• Next neutron detection triggers the shift register again; this time, two 
neutrons are already in the shift register, so we have two coincidences

• Next neutron detection triggers the shift register again; this time, two 
neutrons are already in the shift register, so we have two coincidences

Shift Register

Pre-delay     Gate



Rossi-Alpha Distribution
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High-Level Neutron Coincidence Counter (HLNC)
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3He TUBES (18)

JUNCTION BOX
SHIELD PLANE

JUNCTION BOX

Cd LINERS

POLYETHYLENE

41.0
68.2

ALUMINIUM

12.6

8.3

34.0

17.5

ELECTRONICS

POLYETHYLENE

3He TUBES (18)

Sample Well

Cd LINER

• ε = 17.5%
• τ = 43 µs
• 18 detector tubes: 4-atm 3He, 

50.8-cm active-length, φ2.54cm 
• 6 Amptek preamplifiers



Active Well Coincidence Counter (AWCC)
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• ε = 33%
• τ = 51 µsec
• 42 tubes: 4-atm 3He, 50.8-cm active-length, φ2.54cm 
• 6 Amptek preamplifiers



Photons
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Photons
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• Generic Assay Equation

𝑴𝑴𝑺𝑺𝑺𝑺𝑺𝑺 =
𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 × 𝑪𝑪𝑪𝑪

𝑪𝑪𝑪𝑪𝑪𝑪

MSNM = Mass of special nuclear material
RRad = Measured radiation rate (counts per unit time) from SNM item
CF = Correction for losses due to: 

• item self absorption 
• container absorption
• measurement system electronics

Cal = Calibration constant 



MGA
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• Multi-Group Analysis of 100 keV x-ray and gamma-ray region
• Plutonium isotopics determination
• Uses multiple peaks to create an efficiency curve, eliminating the need 

for a separate efficiency measurement
• High-resolution Ge detector needed

240Pu Peak Intensity:
Compare the intensity of 
the peak at 104 keV with 
that of the one at 160 keV



MGA
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MGA
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MGAU
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• Multi-Group Analysis for Uranium
• Uranium enrichment measurement method

– Uses 89-120 keV region of uranium gamma-ray spectrum

• The low energy region of 
the spectrum is very 
complex with many 
overlapping X-ray and 
gamma ray peaks



MGAU
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MGAU
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Heat
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Calorimetry
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• Well-established, precise method of NDA
• Uses thermal power generated by radioactive decay in the sample to 

determine the mass of special nuclear material
• Heat flow calorimetry is most commonly used for safeguards NDA
• 60 Wheatstone bridge calorimeters

currently being used for Pu and 
tritium measurements at LANL

• Bulk measurements can be taken 
without issues from absorption or 
self-shielding

• Takes much longer than other
NDA techniques



Spent Fuel NDA
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Spent Fuel NDA: Objectives
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• Verify operator declaration of residual uranium, and buildup of 
plutonium
– Burnup
– Initial enrichment

• Verify cooling time of assembly to assist with other parameters
• Verify completeness of assemblies

• IAEA R&D plan lists a milestone requesting “…more sensitive and less 
intrusive alternates to existing nondestructive assay (NDA) 
instruments”
– IAEA Department of Safeguards Long-Term R&D Plan, 2012-2023, Vienna, January 

(2013).



Spent Fuel NDA: Challenges
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• Interruptions to reactor operations
– Nuclear facilities have a standard way of operating and large disruptions (i.e. long 

measurements, drastic fuel movement) are not acceptable
• Fuel inhomogeneity

– Both axially and radially, neutron flux in the reactor affects burnup, resulting in 
inhomogeneous fuel assemblies

• Competing parameters

• Very difficult to accurately model
– Burnup codes are highly dependent on the accuracy of nuclear data and reactor 

operating history

Initial Enrichment Total Neutron Counts

Burnup Total Gamma Counts

Cooling Time



Fork Detector
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• NDA technique widely used by the IAEA and 
EURATOM

• Detector system straddles light water reactor 
fuel assemblies with four fission chambers 
(neutrons) and two ion chambers (gammas)
– Total gamma and neutron intensities as well as ratios 

of intensities give information about fuel assembly 
such as cooling time and burnup

– One of the fission chambers is wrapped in cadmium 
to provide a means for estimating multiplication 

• Other versions of the Fork detector exist with 
3He tubes instead of fission chambers, etc.



Fork Detector
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• Benefits
– Rugged, reliable, validated and verified, easy to use
– Requires minimal fuel movement

• Drawbacks
– Asymmetric burnup could affect gamma signal
– Assumptions about how neutron and gamma counts 

trend with burnup and cooling time fall apart under
irregular burning history

– Results rely heavily upon data provided by operator
– May not be able to detect pin removal under 50%



Cerenkov Viewing Device
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• Viewing device sensitive to ultraviolet
radiation in the water surrounding spent fuel

• Cerenkov radiation provides the UV light and
is derived from the intense gamma radiation
in spent fuel

• Electrons may exceed the speed of light in
water and therefore must lose energy by
emitting Cerenkov radiation. β particles
contribute as well

• Glow patterns above fuel rods used to
distinguish fuel from non-fuel



Cerenkov Viewing Device
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• Benefits:
• Tested, validated method with reliable 

history of use
• Readily detects missing fuel rods
• Burnup and cooling time verification
• Indirect measurement method, 

meaning fuel assemblies may 
remain in storage positions

• Drawbacks:
• Murky water or weak Cerenkov 

signals can inhibit ability to use CVDs
• Neighboring assemblies in pool 

can confuse measurement
• Limited to certain burnups and cooling times due to required signal strength
• Potentially easy to fool with cutoff pins or fake fuel rods

Attas et al., NIMA, 1990



Differential Die-Away Self-Interrogation
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• Spontaneous fission neutrons from  244Cm, 
240Pu in spent fuel thermalize in water and 
interrogate fuel pins 

• Neutron coincidence counting: aim to detect 
two neutrons that are temporally correlated
– Same fission event, same fission chain

• Record times of neutron detections
list-mode data



Differential Die-Away Self-Interrogation
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Increasing neutron 
absorbers

Increasing fissile 
content

Pre-delay     Gate

• Rossi-alpha distribution is a histogram of the times between the trigger 
and each neutron in the gate
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DDSI Analysis
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• RAD can be broken down into fast and slow components
– Fast component comes from detector die-away time
– Slow component comes from neutron lifetime in the fuel

• Early time domain of RAD can be fit with single exponential to yield 
early die-away time 
– y=Ae-t/τ



DDSI Analysis 
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• Early die-away time is nearly linearly proportional to assembly 
multiplication
– Using this, one can determine whether pins have been removed
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Advanced Experimental Fuel Counter 
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• Designed for research reactors only
• System uses:

– Active and passive neutron coincidence counting; 
– An ion chamber for gross gamma-ray counting. 

• Measurement objective is to verify residual fissile mass (i.e., 235U 
+ 239Pu) using active neutron interrogation

• Extended analysis of passive neutron and gamma-ray count 
rates helps verify declared burnup, cooling time, and initial 
enrichment

• Field trials have occurred as follows:
– 2006 High Flux Australian Reactor (HIFAR), Australia,
– 2011 Institute of Nuclear Physics (INP), Uzbekistan, and
– 2014 Institute of Nuclear Physics (INP), Uzbekistan.

By K. Miller, H. Menlove



Safeguards at LANL
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Thank you!
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Neutron Counting: Distributions
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• If you record the time of arrival of every neutron (list mode), 
several distributions can be produced:
– Rossi-Alpha Distribution: Histogram times between neutron arrivals within a certain gate

– Time-Interval Distribution: Histogram times between each subsequent neutron

– Multiplicity Distribution: Count number of neutrons in gate after trigger

Pre-delay     Gate
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