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Abstract8

Linear mathematical models were applied to binary-discrimination tasks rele-

vant to arms control verification measurements in which a host party wishes to

convince a monitoring party that an item is or is not treaty accountable. These

models process data in list-mode format and can compensate for the presence of

variability in the source, such as uncertain object orientation and location. The

Hotelling observer applies an optimal set of weights to binned detector data,

yielding a test statistic that is thresholded to make a decision. The channelized

Hotelling observer applies a channelizing matrix to the vectorized data, result-

ing in a lower dimensional vector available to the monitor to make decisions.

We demonstrate how incorporating additional terms in this channelizing-matrix

optimization offers benefits for treaty verification. We present two methods

to increase shared information and trust between the host and monitor. The

first method penalizes individual channel performance in order to maximize the

information available to the monitor while maintaining optimal performance.

Second, we present a method that penalizes predefined sensitive information

while maintaining the capability to discriminate between binary choices. Data

used in this study was generated using Monte Carlo simulations for fission neu-

trons, accomplished with the GEANT4 toolkit. Custom models for plutonium

inspection objects were measured in simulation by a radiation imaging system.

Model performance was evaluated and presented using the area under the re-

ceiver operating characteristic curve.
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1. Introduction11

Radiation imaging systems for measuring treaty accountable items (TAIs)12

have been proposed as a component of nuclear arms control treaty verification13

between host and monitoring countries. The host country desires to convince14

the monitoring country that the imaged item is a TAI without revealing any15

information they deem sensitive about the TAIs. A disadvantage of imaging16

techniques is that the monitoring party could use knowledge of the detector data17

and imaging system to reconstruct sensitive geometrical information on the host18

country’s TAIs. In order to prevent disclosure of sensitive information to the19

monitor, the host could choose to implement a physical or software information20

barrier (IB). Examples of IB implementations are the CIVET system developed21

by Brookhaven National Laboratory [1] and Sandia National Laboratories’ TRIS22

and TRADS systems [2–4]. The IBs use jointly approved data processing and23

analysis to output a decision for the desired task, viewable by the monitor. The24

monitor can authenticate the device, but the host must certify that the monitor25

cannot access the sensitive measurements used in the decision process. This26

makes the monitoring procedure more expensive, and an IB generally reduces27

confidence in the verification results.28

Our approach is to develop mathematical models (called observer models29

in this work) to classify unverified test objects. The observer models are built30

on acquired calibration data from a trusted TAI and identify tested sources31

using raw projection data as opposed to a reconstructed image. The models32

ultimately arrive at a test statistic that is thresholded to make a decision. The33

observer models presented in this paper are able to process testing data in list-34

mode (LM) format. For each detected event, the relevant data is used to update35

a test statistic, and the LM data is then disposed of. Therefore, a decision is36

made without aggregating projection data or reconstructing spatial or spectral37
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information on the object. To enforce LM processing in practice with a detector,38

an electronic board or system could be connected to the digital outputs that39

would update a test statistic with the incoming signals. The host would need40

to certify that the data vector is never aggregated in the system. This system41

is out of the scope of this article but is discussed in more detail in the future42

work section.43

Alternative methods for reducing or altering the IB have been developed44

by groups at Princeton University and Pacific Northwest National Lab. Glaser,45

Barak and Goldston [5] have developed a zero-knowledge protocol (ZKP) method46

that preloads a measurement system with the complement of a measured data47

set from a trusted item. As data from an object is read in, the measurement48

data is updated. At the end of some predetermined acquisition time, if the ag-49

gregated output reaches some prestated value, that is evidence that the tested50

item was the same as the trusted item. Gilbert, Miller and White [6] are work-51

ing towards a hardware solution to the problem, using a single pixel gamma-ray52

camera (SPGC) behind a coded aperture that changes dynamically with time,53

encoding the measurement data in time. Without knowing the mask sequence,54

the monitor could not reconstruct any sensitive details, though the measure-55

ment could be used to compare the data sets for a trusted item and tested item,56

performing a verification measurement. Neither of these methods has addressed57

the security of sensitive information in the presence of source-term variability,58

such as orientation and count-rate variability, that affect task performance but59

are not of interest to the task itself. The SPGC signal will change when the flux60

from the source changes, and the ZKP output will not be equal to the desired61

value, yielding sensitive information to the monitor. We refer to the variabil-62

ity caused by unknowns in the source term as nuisance parameters. Examples63

include object orientation and object orientation, as the imaging configuration64

may lack precision, or material age, which would affect the detected gamma-ray65

and neutron spectra and count rates. The methods discussed in this paper can66

be trained to account for this variability.67

To the best of our knowledge, there is no model that can perform null hy-68
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pothesis tests while utilizing list-mode information [7]. As such, we have decided69

to focus on binary discrimination tasks. This is an important point; warhead70

verification techniques generally seek to verify the presence of a warhead by71

matching it to a known template. The approach described in this paper could72

be used to distinguish between two hypotheses—a warhead and a well defined73

alternative, such as a collection of spoofs. As another example, after a warhead74

has been confirmed and designated for dismantlement, the monitor desires to75

verify that the explosive has been removed. The methods developed here are76

well suited to answer the question of whether the explosive has been removed77

or not.78

In past work [8], we have demonstrated how the Bayesian ideal observer79

(BIO) [9], configured to process LM data, could be used to perform binary-80

discrimination tasks. In that model, the test statistic is equal to the likelihood81

ratio of measuring a data set given two hypotheses. The BIO thresholds the82

likelihood ratio and offers optimal performance. Nuisance parameters were in-83

corporated in the model by integrating over them when evaluating the likeli-84

hoods. For optimal performance, this method required storage of the binned85

detector data for many different realizations of the nuisance parameters. This86

storage, whether source-term variability was present or absent, would necessi-87

tate an IB as the monitor could potentially reconstruct sensitive details of the88

TAI. As such, only the host country would have access to the calibration data89

and model (requiring an IB). Authentication would be a challenge with this90

method—the monitor would only be able to view the final test statistic, and91

testing the model on non TAI inspection items would be of limited utility due92

to the immense dimensionality reduction involved.93

While we consider this a useful result, the desire remains to develop a model94

that only contains nonsensitive information on the TAIs yet still effectively95

discriminates them. This method would allow the host country to share the96

model with the monitor, allowing the monitor to use the system to test their own97

items and gain some measure of confidence that the system is working as stated.98

The sensitivity of stored information must be balanced against performance;99
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performance declines as less information is stored. The purpose of this paper is100

threefold:101

1. Describe the Hotelling observer [10] (HO), which is the optimal linear102

discriminant and equivalent to the BIO when the statistics of the data103

are Gaussian. The Hotelling weights are applied to binned testing data to104

yield a test statistic which is then thresholded to make a decision. This105

model stores less sensitive information than the BIO and accounts for106

nuisance parameters.107

2. Explore the advantages gained through utilization of the channelized Hotelling108

observer [11] (CHO). With this method, a series of weight vectors are ap-109

plied to the image data, resulting in a lower-dimensional set of channelized110

values that are accessible to the monitor; the weighted sum of these values111

gives the test statistic. This method essentially gives the monitor access112

to multiple nonsensitive test statistics.113

3. Study the addition of penalty terms to the CHO’s optimization routine,114

either to maximize the number of channels available to the monitor while115

maintaining optimal performance or to create non-optimal channels that116

the monitor could access.117

We first describe the methods to be used in this paper. These methods are118

not detector dependent. Therefore, the detector description is decoupled from119

the tasks and objects. Finally, the simulation studies we performed are outlined120

and results shown.121

2. Theory122

2.1. Definitions123

We now briefly introduce the notation for LM data. Much of this is taken124

from work developed by Barrett, Parra, and Caucci [12, 13]. The data can be125

expressed in terms of N , the number of photons and neutrons that interact with126

the detector, which is Poisson distributed, and An, the LM data attributes esti-127

mated for each detected event. The detectable information for the nth observed128
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particle is contained in An. For an imaging detector, this data can be defined129

as130

An = {particle type, pixel number, energy deposited}, (1)

where n goes from 1 to N . Though we use a specific imager in our experiments,131

the methods developed here should apply to any measurement system that can132

process LM data.133

The linear models developed in this paper require vectorized data. It is134

therefore necessary to bin the LM data into a data vector g,135

gm =

N∑
n=1

fm(An). (2)

Here, fm is the binning function for the mth bin of g, which has a total of M136

elements. A linear observer then applies a set of weights Wg to this g to return137

a scalar test statistic t as such,138

t = Wg
†g =

N∑
n=1

M∑
m=1

Wmfm(An). (3)

This equation has been rewritten to put the sum over n out in front to em-139

phasize the LM processing. The resulting test statistic is then thresholded to140

decide which hypothesis is true. Though g is not LM data, t can be updated by141

LM processing. The value of t would be initialized to zero, and the correspond-142

ing weight for each detected event would be added to the test statistic. That143

particle’s data and the previous t value would then be deleted from memory.144

There is always Poisson noise in an imaging system, but g becomes doubly145

stochastic when nuisance parameters that cause variability in the source term are146

present. Nuisance parameters such as object orientation or location could apply147

to all objects being imaged. Other nuisance parameters are object dependent,148

such as variations in gamma-ray or neutron intensities or energy distributions,149

which may be caused by variable material compositions or ages. We refer to the150

set γj of nuisance parameters, e.g.,151

γj = {object orientation, object location, source age}, (4)
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where the index j is used to denote the object type. The index j can be ei-152

ther 1 or 2 since we are considering binary-discrimination tasks between two153

object classes. In this paper, hypothesis 1 corresponds to the TAI and 2 to the154

alternative hypothesis.155

2.2. Hotelling Observer156

The HO is the linear observer that best separates the test-statistic distribu-157

tions for the two hypotheses [9]. As a reminder, one hypothesis would be that158

the item is a warhead of a certain type, and the second that the imaged item159

is a certain spoof or belongs to a collection of spoofs. It is also equivalent to160

the BIO when the data is normally distributed. The Hotelling weights WH are161

defined as,162

WH = Kg
−1∆g

Kg =
K1 + K2

2

∆g = g2 − g1.

(5)

Here Kj represents the covariance matrix and gj the mean data vector for source163

j. The averages are over the Poisson noise in the imaging system and, when164

present, nuisance parameters. The presence of nuisance parameters causes Kg165

to generally be dense. A discussion on the evaluation of the dense Kg
−1 can166

be found in Appendix A. If the nuisance parameters are properly characterized167

by the host, false negatives will be kept to a minimum. Any deviation of the168

variability in these parameters between the objects the model is trained on169

compared to the objects the model is tested on will result in a higher percentage170

of false negatives.171

The differences between the HO and BIO are critical in regards to informa-172

tion storage. While the BIO stores the detector data for each measurement in173

the covered nuisance parameter space, the HO simply contains a product of first174

and second order statistics over this space. As an example that is explored in175

Appendix B, if orientation is considered to be a nuisance parameter, the spa-176

tial and spectral information is averaged over this nuisance parameter density,177
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yielding a set of weights that do not have an analogue to a physical pair of178

objects. The Hotelling weights WH in (5) are analogous to a second imaging179

system that only observes the differences between the two TAIs. If the monitor180

gained access to WH, and tried to reconstruct grec = WH
−1t (where WH

−1 is181

a pseudoinverse), the resulting data set would look like the Hotelling weights,182

not the highly sensitive detector data. All other information in g is in the null183

space of WH. However, WH is still useful information to the monitor, as it184

is related to the difference between geometries or material composition of the185

objects. This is information the host may want to keep hidden. For that reason,186

we will treat the Hotelling weights as sensitive through the rest of this paper.187

In practice, the host would acquire calibration data and determine the188

weights. If the weights were deemed sensitive and stored behind an IB, au-189

thentication would again be a challenge as when using the BIO. The monitor190

would only be able to access the test statistic. There is a benefit to the test191

statistic being outside an IB as opposed to a standard red light/green light192

decision—the monitor would have some ability to differentiate objects other193

than the TAI and the alternate that the model is trained on.194

2.3. Channelized Hotelling Observer195

Use of the CHO has become widespread in the field of medical imaging as a196

cheap alternative to a human observer in image quality studies [14, 15]. Here we197

use it for a much different purpose—information security. The data vector g,198

which has a size of thousands to millions or higher depending on the detector,199

is channelized by an operator T into a much smaller vector v, with length L200

that can be as low as the user desires. Each row of T contains a template of the201

same size as WH. Using calibration data, a set of optimal channelized weights202

Wv are then found, and applied to channelized testing data to make decisions203

v = Tg

t = Wv
†v,

(6)
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where the weights that best separate the resulting test-statistic distributions204

are,205

Wv = Kv
−1∆v. (7)

Kv
−1 and ∆v are analogous to the terms in (5). The CHO can also be repre-206

sented by the weights for g by,207

W†
g = Wv

†T (8)

Representing the model this way provides a point of comparison between non-208

optimal Ts for the CHO and the Hotelling weights. The performance of the209

CHO depends on the T chosen. To achieve performance equivalent to the HO,210

it is necessary to find the matrix that best separates the multivariate normal211

distributions on vj , or the signal-to-noise ratio,212

SNR2(T) = ∆v(T)
†
Kv(T)−1∆v(T). (9)

The T that optimizes this function is found through a gradient descent op-213

timization routine with backtracking [16]. Matrix calculus [17] is required to214

take the derivative. With an optimal T, performance equivalent to the HO is215

achieved.216

We have therefore reduced storage from the sensitive WH to a channelizing217

matrix T and a set of channelized weights Wv. However, for an optimal T,218

WH
† ≈Wv

†T. (10)

As we believe WH would be deemed to be sensitive information, the host cannot219

reveal both Wv and T to the monitor. The monitor should only be given access220

to T or Wv, or a subset of the two, but not the entirety of both. However, as221

is shown in the results section, the optimization of T often results in sensitive222

channels that resemble the Hotelling weights. Therefore, a standard implemen-223

tation of the CHO in a treaty verification setting would require the host to224

gather calibration data and determine the channelizing matrix. The monitor225

would only have access to Wv and be allowed to observe the channelized v for226

each measured item.227
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In addition, because the SNR2 is being optimized, the monitor is again228

unable to reconstruct g, even if they were to cheat and gain access to T. Similar229

to the HO discussion, T−1v (where T−1 is a pseudoinverse) yields a dataset that230

looks like the Hotelling weights.231

The CHO does have some added benefits over the HO:232

• Training of the CHO is far more computationally practical than the HO.233

Rather than needing M samples to generate an invertible covariance ma-234

trix, the host can get by with (at a minimum) L. Kg and g can be found235

through the L samples, then the optimization occurs using Kv = T†KgT236

and v = Tg. This is a fundamental advantage for the CHO.237

• The L channel values, assuming L << M , are nonsensitive. The more238

channels present, the more information the monitor can use to discriminate239

possible spoofs from the TAIs other than those designated alternatives the240

model is trained on. The individual channel values can be aggregated as241

more sources are tested. The monitor could compare the test statistic242

value returned when measuring an unknown item to the test statistic243

distribution that results when measuring the objects that the model is244

trained on.245

• There are an infinite number of channelizing matrices that maximize the246

SNR2. Ideally, the monitor could use this fact to gain confidence that the247

algorithm is not outputting a result that is predetermined by the host,248

possibly by randomly picking the channelization matrix from many dif-249

ferent optimizations. This would increase confidence that the host is not250

placing a spoof in front of the detector, as the host would not know in251

advance what the channels are, and therefore cannot design a spoof to252

return the same value. This could be combined with techniques to be dis-253

cussed in the upcoming sections on generating a nonsensitive channelizing254

matrix.255
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2.4. Inclusion of Penalty Terms in Optimization Routine256

While the standard optimization of T discriminates on sensitive information257

for certain tasks, the addition of a penalty term to the objective function in the258

form of259

fobj(T) = SNR2(T)− fpen(T) (11)

offers some possibilities in circumventing the IB requirement. In this section260

we discuss two different methods that have been developed to hide or explicitly261

penalize out sensitive information.262

2.4.1. Channel Performance Penalty to Create Nonsensitive Channels263

Here, we treat WH as the sensitive information that the monitor cannot264

access. We attempt to maximize the amount of nonsensitive information avail-265

able to the monitor while still maintaining optimal performance. Nonsensitive266

channels were created using a penalty term that reduces the performance of267

each individual channel,268

fpen(T) = η

L∑
l=1

SNR2(Tithchannel). (12)

This penalizes the ability of each channel to distinguish the TAI from the spoof.269

Despite this, it is possible to maintain optimal performance, as the optimization270

routine now focuses on the relationships between the channels rather than the271

channels themselves.272

As the results section shows, this method is not a perfect answer for the273

information security problem. While the individual channels are nonsensitive,274

if the monitor was given the entire T, a singular value decomposition [18] could275

lead them to the Hotelling weights. However, it does allow the host to give276

the monitor a large number of rows of T. This would be helpful to verify the277

channelization process is working properly.278

2.4.2. Penalizing Declared Sensitive Information279

The first method treats WH as the sensitive information that the host cannot280

share with the monitor, but that is not strictly true. If the host is able to281
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explicitly declare what information in the TAI is sensitive (such as mass or282

isotopic composition), the optimization of the channelization matrix can be used283

to penalize the model’s ability to discriminate along that sensitive parameter.284

If the host does not want the monitor to know the parameter p, which takes on285

a value p0, within a tolerance ∆p, the host can create the following objective286

function,287

fpen(T) =SNR2
1−2(T)

− ηSNR2
(1,p=p0)−(1,p=p0+∆p)(T),

(13)

where object 1 is the TAI and 2 is the spoof hypothesis. This objective function288

finds a T that maximizes the distance between the channelized-data distribu-289

tions for the TAI and spoof while minimizing the distance between the TAI290

constructed with p = p0 and TAI constructed with p = p0 + ∆p. The sum291

of the optimally weighted channels Wv
†T then no longer contains information292

about the differences in measured data when the TAI changes along a sensitive293

parameter. In essence, this routine puts that sensitive information into the null294

space of the channelizing matrix. As stated in the introduction, a mathematical295

model such as this one, which can’t be used to determine the value of sensitive296

parameters of the TAI, could be shared with the monitor. The only IB required297

in this setup would be in the measurement of the trusted items and implemen-298

tation of the channelization procedure. The monitor would be able to access299

the L channelized values and be given T. The monitor’s ability to measure and300

analyze their own items using the same model would increase their confidence301

that a useful measurement is being performed during verification.302

There is a legitimate concern that the second term in eq. (13) could be303

altered to include a spoof that the monitor is not aware of, yielding a model304

that cannot differentiate the chosen spoof. Ultimately, because this model leads305

to a nonsensitive T, the monitor could use the model to test for simulated spoofs306

in order to investigate if the host has cheated.307
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Figure 1: Fast-neutron coded-aperture imaging system. The imager uses a polyethylene coded

aperture and a 4 × 4 array of liquid-scintillator detectors, each consisting of 10 × 10 (1 cm)2

pixels. A quarter-inch lead plate (not pictured) is positioned in front of the pixelated detectors.

3. Detector Description308

The simulated detector is the fast-neutron coded-aperture imager (see Fig-309

ure 1), developed by Oak Ridge National Laboratory and Sandia National Lab-310

oratories. More details can be found in reference [19]. In the simulations per-311

formed here, a rank 19 modified uniformly redundant array [20] mask is used.312

Other detector configuration parameters are set such that a 50 cm × 50 cm field313

of view is achieved. The raw projection data discussed in this paper consists of314

counts or count rates in 40 × 40 detector pixels after nominal event-selection315

cuts. The detector system had a source-to-mask distance of 70.5 cm, mask-to-316

detector distance of 60 cm, mask element size of 1.21 cm and mask thickness of317

6.95 cm.318
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4. Task Description and Simulation Data319

The models were trained on data simulated from a source placed at two320

different locations, with the data set from one of those locations being treated as321

the TAI. The model was then asked to decide the location that an independently322

simulated data set was taken from. The relevant details necessary to replicate323

the simulations and the simulated data are also discussed in this section. No324

nuisance parameters were considered in this task—for an example incorporating325

nuisance parameters, see Appendix B.326

4.1. Sources327

Throughout this paper, a single discrimination task is used. The BeRP ball328

[21], a 3.79 cm radius solid sphere, was simulated at (0 cm, 0 cm) and (2 cm, 2329

cm). The source at the origin was treated as the TAI and the off-center source330

was treated as the spoof we desire to discriminate from the TAI. the models331

were asked to determine the location of independently simulated data based on332

the neutron image.333

4.2. Forward Model in GEANT4334

We developed an application that uses the GEANT4 toolkit [22, 23] to model335

neutron transport through Monte Carlo methods. Particles emitted by the ob-336

jects were transported through the object geometry to the detector. A detector-337

response code records the detected energy and the pixel-dependent light output338

(determined through experimental calibration data), applies an energy smear339

specific to the detector, and bins the event into a mean pixel location. A per-340

fect pulse-shape discrimination between gamma-rays and neutrons was assumed.341

Visualization of our GEANT4 simulation is shown in Figure 2.342

4.3. Data343

As the difference in neutron images (Figure 3) was expected to be the great-344

est difference between the data sets, the neutron detector data was summed over345

energy. Gamma-rays were ignored. No neutron background was considered, and346
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Figure 2: Geant4 model of system. The BeRP ball is shown on the left in green. The

polyethylene mask, shown in yellow, is in the center and surrounded by a mask holder shown

in blue. On the right is the pixelated detector.

as such studies distinguishing between different BeRP ball locations use only347

the source data.348

4.4. Experimental Outline349

For each object, two simulations were executed. One simulation was used350

for calibration to generate the observer model, and the second set of data was351

used to test the model. This was done to prevent overestimating performance.352

4.5. Evaluating Performance353

The receiver operating characteristic (ROC) curve [24] plots the true pos-354

itive fraction (the fraction of times the model correctly declares the object is355

the second type) against the false positive fraction (the fraction of times the356

model incorrectly declares the object is the second type) for a range of thresh-357

olds across the test statistic t. The metric chosen to evaluate the models was358

the area under the ROC curve (AUC). We chose this metric because we are359

not immediately concerned with where to set the test-statistic threshold in the360

observer studies due to unknown costs associated with incorrect outcomes, and361
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Figure 3: The figure on the left corresponds to a BeRP ball imaged at (0 cm, 0 cm) while

on the right it was imaged at (2 cm, 2 cm). The colorbar is in units of detected counts per

second. There were 5.5 million total detected counts (corresponding to an acquisition time of

about 23 minutes) that went into each of these images.

the AUC represents performance integrated over all thresholds. Generally, the362

AUC increases along with the acquisition time.363

We used the two-alternative forced-choice test [25] to calculate the AUC364

metric. The observer is presented with a series of pairs of testing datasets. In365

each pair, one dataset is from a measurement of source 1, and the other is from366

a measurement of source 2. For each dataset, the observer calculates a test367

statistic that is intended to have a higher value for source 2 than for source 1.368

The AUC is equivalent to the fraction of pairs that have a larger test statistic369

using the source 2 data.370

5. Experiments and Results371

Calibration data for the two imaged BeRP ball locations was simulated and372

the HO and CHO were built from that data, then tested on independent data.373

All results presented here were done with the same parameters in the gradient374

descent optimization routine. The backtracking β parameter was set to 0.5. The375

optimization was ended when the difference in function value between steps was376

1e-6 of the function magnitude or when the step size of T reached 1e-5 or the377
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Figure 4: The Hotelling weights when the objects are BeRP balls at two different positions.

magnitude of the gradient reached 1e-5.378

5.1. Hotelling Weights379

The Hotelling weights (Figure 4) correspond to a scaled version of the image380

shift in Figure 3. Here, the BeRP ball at (2 cm, 2 cm) was source 2 in (5). The381

Hotelling weights in this example relate directly to the differences in projection382

data between the two objects.383

5.2. Channelization Examples and Observer Performance384

A four channel optimization (9) of the channelizing matrix was performed.385

The results in Figure 5 show multiple channels with strong performance that386

look similar to the Hotelling weights. In this task, the channels themselves387

would constitute sensitive information. This is further evidenced by analyzing388

the performance of the models and the best performing channel. We see that389

when the SNR2 is optimized, the HO and CHO have equivalent performance390

and the best channel shows near equal performance to these optimal observers.391
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Figure 5: The left plot shows an example optimization of the channelizing matrix for the

BeRP ball location study. Multiple channels show strong performance. Not shown here is the

optimally weighted sum of channels, which results in an image very similar to the Hotelling

weights for this task with an SNR2 of 1.74. On the right is the performance plot for the

BeRP ball location study. Many optimizations of the channelizing matrix were done for each

point on the AUC curve.

Because the individual channels themselves are sensitive, the host would by392

necessity have to treat T as sensitive.393

5.3. Models with Penalty Terms394

This section presents implementations of the models incorporating penalty395

terms in the channelization matrix optimization routine.396

5.3.1. Channel Performance Penalty to Create Nonsensitive Channels397

We begin by showing the effect that the penalty term in eq. (12) has on398

the maximum channel SNR2. For this study, we chose an acquisition time399

corresponding to high performance in Figure 5, so that on average 400 signal400

counts were observed. As Table 1 shows, when η is increased up to a value of401

one, the maximum channel performance continues to drop. An example output402

of the channel optimization when η has a value of 1 is shown in Figure 6. We403

see that the individual channels themselves are nonsensitive–each performs very404

poorly in discriminating the two BeRP ball locations.405
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Figure 6: An example optimization of the channelizing matrix when the channel performance

penalty coefficient η=1. Each channel appears to be random, but when properly weighted,

maximum performance is obtained.
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η Mean SNR2

for max chan-

nel

SNR2 All

Channels

Percent failed

(total SNR2 <

0.1)

1e-4 8.13 8.63 0

1e-3 6.66 8.63 0

1e-2 1.17 8.63 0

1e-1 0.106 8.63 0

1 0.0042 8.63 0

1.1 0.0025 3.88 55

Table 1: For each row in this table, 100 optimizations were performed. The acquisition time

for this study was set so an average of 400 mean signal counts were read in. This corresponds

to an optimal SNR2 of 8.63 between the test-statistic distributions. As η increases, the best

channel performance drops. When η rises above 1, the optimizations fail increasingly often.

Though this routine can effectively generate nonsensitive channels, a singular406

value decomposition [18] of T, as shown in Figure 7, reveals that the singular407

vector with the lowest singular value looks like the sensitive WH. This result408

emphasizes the fact that a T that optimizes the SNR2 necessarily contains409

sensitive information on the objects.410

To this point, the channel penalty has not resulted in the monitor being411

able to access any more information, as T is still sensitive. However, due to the412

importance this optimization routine places on the relationship between chan-413

nels, removing a single channel or small number of channels from the resulting414

T causes a debilitating effect on performance (see Table 2)—regardless of how415

large L is, the performance of a large number Lmon < L of the channels is416

very poor. This creates an interesting application for treaty verification. The417

host can give the monitor Lmon channels of T, the channel weights Wv and418

in testing the host can access all of the channelized data v. The host would419

only keep a small number of channels, which could be chosen at random. When420

90% of channels are given, performance is poor, but there are still occasional421

20



λ
1
 = 0.80231

20 40

X Pixels

10

20

30

40

Y
 P

ix
e

ls

λ
2
 = 0.54949

20 40

X Pixels

10

20

30

40

Y
 P

ix
e

ls

λ
3
 = 0.5061

20 40

X Pixels

10

20

30

40

Y
 P

ix
e

ls

λ
4
 = 0.014782

20 40

X Pixels

10

20

30

40

Y
 P

ix
e

ls

Figure 7: Singular value decomposition of the channelizing matrix shown in Figure 6. The

singular vector with the lowest singular value contains the Hotelling weights.

21



L Lmon SNR2 for Lmon

channels

Percent failed (to-

tal SNR2 < 0.1)

4 3 0.269 88

10 9 0.7105 50

10 7 0.0195 98

25 24 0.975 18

25 22 0.291 46

25 18 0.0314 98

Table 2: 50 optimizations of the channelizing matrix with L channels were performed in each

row in this table. The second column Lmon is how many the monitor would have access

to. The right two columns shows how Lmon channels would perform at the task, and what

percentage of the optimizations effectively minimized the SNR2 of the remaining channels.

The acquisition time for this study was set so an average of 400 mean signal counts were read

in. This corresponds to an optimal SNR2 of 8.63.

optimizations where the monitor could gain useful information. When only 75%422

of channels are given to the monitor, the resulting performance is very poor,423

and task performance is near the guessing observer.424

Overall, this method presents two advantages over the standard implemen-425

tation of the CHO. Because the host can share Lmon channels, the monitor426

could hypothetically image a known nonsensitive test object, see the nonsensi-427

tive v and verify that the algorithm is working properly on the shared channels.428

Because they have access to the channels, the monitor could determine what429

alternative spoofs could be used to fool these channels and replicate the chan-430

nelized value distributions for the trusted items.431

5.3.2. Penalizing Declared Sensitive Information432

To carry out this task, we created a toy problem (see Figure 8) based on433

the BeRP ball location data. We treated differences in the image data due to x̂434

location, from a range of 0 mm to 20 mm, as sensitive and differences in data435

due to the ŷ location as nonsensitive. The BeRP ball was simulated at (20 mm,436
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0 mm) to penalize x̂ information within this tolerance. This was accomplished437

using the following objective function,438

fobj(T) =SNR2
(0,0),(20,20)(T)

− ηSNR2
(0,0),(20,0)(T).

(14)

Figure 9 shows the result of this optimization routine. Choosing a high value439

for the penalty coefficient, η = 50, the CHO is no longer able to distinguish the440

pair of sources that only differ in their x̂ coordinate. A plot of WvT is shown441

in Figure 10. Note that the result corresponds to a simple ŷ shift in the count442

maps. The effectiveness of this method is demonstrated further in a performance443

study (see Figure 11). When η = 0, the optimization routine only maximizes444

the SNR2 of the two different objects, and the performance matches Figure 5.445

When η = 50, performance in discriminating the objects we chose to optimize446

is still very good while discrimination between the (0 mm, 0 mm) and (20 mm,447

0 mm) objects is near the guessing observer. We are also able to distinguish448

a BeRP ball at (0 mm, 20 mm) from (0 mm, 0 mm) with this method, which449

is expected because the ŷ differences between the objects were not penalized.450

Finally, this particular study carries the added benefit that a tested source inside451

the tolerance at (10 mm, 0 mm) cannot be distinguished from (0 mm, 0 mm).452

6. Conclusion453

Using the linear HO and CHO models, we have developed methods that can454

be used to reduce storage of sensitive information while maintaining task per-455

formance. Treating the Hotelling weights as the sensitive information, a penalty456

term on individual channel performances would allow the host and monitor to457

share some channels while maintaining optimal task performance. If the host458

can define precisely what parameters on their object are sensitive, they could459

penalize out that specific information in the model, yielding test-statistic distri-460

butions with equal means for all objects that differ within the range of parameter461

values defined as sensitive.462
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Figure 8: Diagram of BeRP ball locations (note that the BeRP ball size is larger than the

difference between locations shown here). Performance between (0 mm, 0 mm) and (20 mm,

20 mm) is optimized while (0 mm, 0 mm) and (20 mm, 0 mm) is penalized in this task.
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Figure 9: The SNR2 for the BeRP ball at (0 mm, 0 mm) and (20 mm, 20 mm) vs (0 mm, 0

mm) and (20 mm, 0 mm), for an acquisition time corresponding to an average of 1000 signal

counts observed. As η increases, the ability to discriminate the penalized pair of sources drops

to zero while the SNR2 for the optimized sources drops by approximately a factor of 1/3.
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Figure 10: A plot of WvT when the x̂ information has been penalized with η = 50.

We consider this a very encouraging result, but it is a first step. In the BeRP463

ball localization problem, a single penalty term can be used to prevent the model464

from differentiating objects within the sensitive x̂ range, but additional studies465

have proven this is not always true. Multiple penalty terms would likely need466

to be incorporated for a given penalized parameter. Furthermore, in practice467

multiple parameters would likely be deemed sensitive by the host, and that may468

require an additional penalty term with a distinct η in eq. (13). The inclusion469

of nuisance parameters adds another layer of difficulty to this problem, as we470

would need to know the effect of nuisance parameters on both objects in the471

penalty term. Lastly, to adapt this method for real-life verification, the host472

would likely need to simulate the items that differ along sensitive parameters,473

as construction of these items would be too expensive.474

7. Future Work475

While we believe these results are strong, the penalty terms discussed in this476

paper may not be ideal. For example, the penalization of the SNR2 in eq. (13)477

25



0 1000 2000 3000 4000 5000
Mean Signal Counts

0.5

0.6

0.7

0.8

0.9

1

A
U

C

eta=0,   Test (0,0)v(20,20)

eta=50, Test (0,0)v(20,20)

eta=50, Test (0,0)v(20,0)

eta=50, Test (0,0)v(0,20)

eta=50, Test(0,0)v(10,0)

Figure 11: Performance of the CHO with channelization matrix optimized by eq. (14). The

black line shows the performance of a standard optimization without a penalty term. Including

the penalty in the optimization of T, good performance is maintained when classifying sources

that differ in ŷ, while near guessing observer performance is seen when classifying sources that

differ in x̂.
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478 only necessarily equalizes the means of the test-statistic distributions for the 

479 two objects. If the monitor was given the test statistics for each tested item, 

480 they could experiment with various object configurations, trying to arrive at 

481 an object geometry that matched the variance of t and not just the mean. A 

482 more appropriate penalty term could penalize the distance between distributions 

483 using metrics described in [7].

484 A physical implementation of the nonsensitive channelization matrix is the 

485 next step for this project. One possibility is an electronic board that would read 

486 in the pulse characteristics (to determine particle type), integrated charge (to 

487 determine energy) and PMT ratios (to determine pixel ID) for each event, find 

488 the weight corresponding to these values, and update the test statistic. Another 

489 possibility is an attenuating plate placed between the mask and the detector 

490 plane, where the attenuator thickness varies over the detector plane to create 

491 indistinguishable data sets for objects that vary along a sensitive parameter. 

492 Further investigation would be required to determine whether this would be 

493 physically realizable.
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502 9. Appendix A

503 This appendix discusses calculation of the inverse of a dense covariance ma-

504 trix in the case that there is additional variability in the object, background,
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or imaging system. In cases where the object is known exactly (signal-known-505

exactly, or SKE), the only randomness in the data g is due to Poisson noise,506

and the covariance matrices would be diagonal with values equal to the mean.507

In the SKE case, taking the inverse of the covariance matrix is trivial.508

Upon incorporation of nuisance parameters, the averages become doubly509

stochastic or worse and the problem becomes more difficult. The terms that510

comprise the Hotelling weights are511

Kj =
〈〈

(gj − gj)
†(gj − gj)

〉
gj |γj

〉
γj

gj =
〈〈

gj
〉
gj |γj

〉
γj
.

(15)

The first average is over Poisson noise while the second is over the nuisance512

parameter distributions. This can cause the covariance to become dense and513

the inverse unwieldy; in a detector with 1600 pixels, where 64 energy bins are514

used there are approximately 1e5 elements in g with 1e10 elements in Kg. The515

large size of g presents issues when using the HO in practice. A realistic number516

of measurements would be far less than the size of the data vector, leading to a517

non-invertible covariance matrix. Certain estimation techniques can be used to518

overcome this limitation [26, 27], but require often unrealistic assumptions.519

In simulation, this computational barrier can also be overcome using the520

Matrix Inversion Lemma [28]. To use this lemma, the covariance matrix must521

be able to be represented in the form,522

K = A + BCD, (16)

where A must be diagonal. To put the covariance matrix in this form, one can523

add and subtract gj , the noise-averaged data from inside each parenthesis in the524

covariance matrix equation of eq. (15), so each term is ((gj − gj) + (gj − gj)).525

When taking the statistical average, the cross terms average to zero and the526

covariance matrix can be expressed as,527

Kj =
〈
Kgj |γj

〉
γj

+ Kγj = Diag(gj) + Kγj (17)

The left matrix is diagonal with values equal to the mean of the detector data,528
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averaging over Poisson randomness and all nuisance parameter densities. The529

right term is dense.530

Treating orientation as a nuisance parameter, a vector θ can be defined531

which corresponds to the orientation of the object being imaged, where [1 0 0532

....0] and [0 1 0 ....0] correspond to different object orientations. Then a system533

response matrix H can be defined and resulting detector data g = Hθ. The534

covariance matrix for source j, Kγj , can then be represented by the detector535

response function and the covariance matrix for the θ vector,536

Kγj = HKθj
H†. (18)

In simulation we have knowledge of the nuisance parameter distributions, which537

are used to find Kθj
. By assuming the GEANT4 data is the ”true” system538

response to each object we find the covariance matrix Kγj . This technique539

allows us to apply the matrix inversion lemma, reducing the problem from a540

M ×M inverse, where M can be thousands to millions, to a P × P inverse,541

where P is the number of orientations chosen to average over.542

10. Appendix B543

This appendix demonstrates the effect of the incorporation of nuisance pa-544

rameters in the Hotelling observer model. In this study, the observer models545

were applied to discriminate between a pair of Idaho National Laboratory (INL)546

inspection objects labeled 8 and 9 [29], which are referred to as IO8 and IO9547

(see Figure 12).548

10.1. Objects and Imager549

IO8 and IO9 differ in their shielding material, causing a disparity in the550

gamma-ray spectra in the image data. Multiple orientations of each object were551

considered in this task in order to understand how nuisance parameters affect552

the HO. The fast-neutron coded aperture was once again used to measure the553

objects. Though the detector is designed to observe neutrons, it also serves as a554
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Figure 12: IO8 and IO9 developed by INL. IO8 is plutonium shielded by depleted uranium

(DU) while IO9 is plutonium shielded by highly-enriched uranium (HEU). Both assemblies

are supported by an aluminum framework inside an 8” × 8” × 8” aluminum box that is 1”

thick.

gamma-ray imager and low-resolution spectrometer. Gamma-rays were binned555

into 50keV energy bins.556

10.2. GEANT4 model557

Due to similarities in the geometry between the two objects, neutrons were558

not incorporated in this study as the spectral and spatial differences were ex-559

pected to be minimal. A linear energy bias, as well as a low-energy cutoff of560

100 keV were used to make the simulations computationally feasible. Due to the561

quarter inch lead plate in front of the detector pixels, the cutoff has a negligi-562

ble effect on the output. A generic gamma-ray radiation background spectrum563

was generated using the Gamma-ray Detector Response and Analysis Software564

(GADRAS) [30], and was added to all pixels.565

To simulate multiple object orientations, we used a method developed by566

Arvo [31] that can be used to rotate the items into evenly spaced orientations.567

The method uses three numbers between zero and one to generate rotations of568
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Figure 13: Comparison of IO8 and IO9 gamma-ray spectra after averaging over all simulated

orientations. DU inside IO8 is the cause of the increased counts at higher energies.

an object. The object is first rotated around the ẑ axis using the first number;569

then the ẑ (vertical) axis is rotated to a certain location in φ, θ space using570

the last two. The model was trained on sixty total evenly spaced orientations.571

Three initial rotations around ẑ were chosen. Then ẑ was rotated into twenty572

different points (five in φ, four in θ).573

The gamma-ray detection rates and energy spectra present the most signifi-574

cant difference between the two sources (see Figure 13). The spectral disparity575

is due to the difference in shielding material, as HEU has a highly active emis-576

sion line at 186 keV and DU a moderate activity at 1001 keV. Both the detected577

spectra and overall count rate are dependent on the orientation chosen, though578

the count rate varies more significantly with orientation.579

10.3. Hotelling Weights580

For the INL inspection objects, 60 orientations of each object were measured581

in simulation, the models were developed from that data, and then they were582

asked to discriminate based on an independently simulated single data set from583
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Figure 14: The Hotelling weights when discriminating IO8 and IO9. The orientation-known-

exactly observer (blue line) directly relates to the observed spectra for that orientations. Their

change upon incorporation of nuisance parameters is shown in the black and red lines.

one of those 60 orientations for a tested object. The Hotelling weights for the584

two inspection objects (Figure 14) relate directly back to Figure 13. When the585

orientation nuisance parameter is not present, the Hotelling weights are found586

by taking the difference between the counts per second in each bin of the spectra587

for each object (here IO9 was treated as source 2 and IO8 as source 1 in eq. (5))588

and scaling by the inverse of the average of the count rates. When nuisance589

parameters are accounted for, the covariance matrix is dense as in eqs. (17)590

and (18) and there is a shift in the Hotelling weights. Furthermore, WH is591

time dependent, as the covariance matrix in (17) that averages over nuisance592

parameters dominates at high acquisition times.593
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