Monte-Carlo simulations of the 2019 Mol configuration allow to evaluate the detectability of fissile material in various scenarios.

Introduction
Key challenges of nuclear disarmament verification (NDV):
- Develop measurement procedures and devices to determine the presence or absence of fissile material (and shielding)
- Problem: Information only partially available due to shielding and proliferation concerns
- Simulations (verified with experimental data) can help to assess questions which are experimentally difficult to execute due to resource limits, restricted access to fissile material, safety risks and radiation protection

Method
At SCK-CEN in Mol, Belgium, close-to-weapons-grade plutonium, present as unirradiated plutonium-uranium mixed oxide (MOX) fuel rods, was investigated:
- Different shielding materials in varied thickness, fuel amounts and isotope vectors were examined
- For these configurations spontaneous fission (SF) and (α,n) spectra were calculated with Geant4

Results

Conclusion:
- Strongest signal reduction for PE+Cd+Pb shielded configuration
- Neutron signal: variations in isotope composition only detectable through change in flux (due to change of activity)

Perspectives
- Simulate floor and walls to calculate neutron reflection
- Include effect of various detectors on signals
- Evaluate further methods, e.g. active measurement techniques