Evaluating the detectability of fissile material

Geant4 Monte-Carlo simulation in the context of nuclear disarmament verification

Manuel Kreutle, Gerald Kirchner

Universität Hamburg

Carl Friedrich von Weizsäcker-Centre for Science and Peace Research, Hamburg, Germany

Introduction

Key challenges of nuclear disarmament verification (NDV):

- Develop measurement procedures and devices to determine the **presence or absence of fissile material** (and shielding)
- Problem: Information only partially available due to shielding and proliferation concerns
- Simulations (verified with experimental data) can help to assess questions which are experimentally difficult to execute due to resource limits, restricted access to fissile material, safety risks and radiation protection

Method

At SCK-CEN in Mol, Belgium, close-to-weapons-grade plutonium, present as unirradiated plutonium-uranium mixed oxide (MOX) fuel rods, was investigated:

- Different shielding materials in varied thickness, fuel amounts and isotope vectors were examined
- For these configurations **spontaneous fission** (SF) and (α,n) spectra were calculated with Geant4

Results

Figure 1: Comparison of bare (black) and 5 cm Polyethylene, 0.11 cm Cadmium, 1 cm Lead shielded (gray) SF neutron spectrum.

Conclusion:

- strongest signal reduction for PE+Cd+Pb shielded configuration
- neutron signal: variations in isotope composition only detectable trough change in flux (due to change of activity)

Perspectives

- \rightarrow Simulate **floor and walls** to calculate neutron reflection
- \rightarrow Include effect of various detectors on signals
- \rightarrow Evaluate further methods, e.g. active measurement techniques

Monte-Carlo simulations of the 2019 Mol configuration allow to evaluate the detectability of fissile material in various scenarios.

The poster and the whole study are available at: www.znf.uni-hamburg.de/forschung/publikationen

Geant4: Open-source toolkit for simulation of particle passage through matter, **developed at CERN** (Geneva, Switzerland) \rightarrow most common databases were used (ENDF/B-VIII, ENSDF, ...)

from centre of element)

Shielding:

Isotope vector:

Interpretation:

Extension and outlook:

- shielding

Data output: neutron multiplication factor k_{eff}, neutron spectrum and flux in reference area (20 cm x 20 cm in 10 cm distance

Figure 2: Different shielding and corresponding k_{eff}.

Figure 3: Different shielding and corresponding neutron fluxes.

Figure 4: Superposed SF and (α ,n) neutron spectra for Long (black) and short configuration (black).

• All changes within limits of given configuration lead to significant change in neutron signals

• Varying isotope composition while changing amount to maintain flux might lead to very small change in neutron signals

• Work will be extended by gamma signal contribution to investigate effect of combined measurements

• Interesting to study: small variation scenarios with strong

 \rightarrow if signal changes still too small: active measurements?