IPNDV Working Group 6: Technologies for Verification Nuclear Explosive Device (NED) in Container, SNM Monitoring Technologies

	SNM in a Container Monitoring Technologies									
Technology	Information Detected/Determined	Key Limitations (shielding issues, possible size restraints, etc.)	Approximate Measurement Time Scales	Equip Availability (TRL)/for Simple Scenario (TRL)	IB Needed (TRL?)	Applicable Dismantlement Steps (1-14)	Comments	Related Technology Paper		
Passive Gamma Detection	Instrument detects gamma radiation emitted that can be used to determine presence of HEU, Pu, and Pu isotopics.	Vulnerable to significant external shielding. Requires homogenous isotopic composition.	30–60 minutes, days for HEU	Readily in use today (9) / for dismantlement (7)	Yes	1-14	Severe constraints likely for any use in Step 8; not applicable for actual dismantlement operation (physical separation of components). In many scenarios, passive gamma detection would be unnecessary during the transport steps because chain of custody techniques would be sufficient. A small amount of shielding will block any potential signal of U235, so this method is not recommended for detecting U235.	Gamma-ray Spectrocopy (HRGS)		
Passive Gamma-ray Imaging	Detects gamma radiation and can provide information as denoted above Location of gamma-ray emitting object Shape of gamma-ray emitting object	Vulnerable to significant external shielding. Depends on how strong the source is. Low energy photons are easily scattered by explosives but can also image where nearby materials may occur and easily attenuated by metals.	30–60 minutes Several hours Several hours	Readily in use today (9) / for dismantlement (7)	Yes (1)	Storage steps Storage steps Storage steps	Can be done in conjunction with location and/or shape analysis Takes longer to image than to do just gamma spectroscopy. Imaging is only practical for the storage steps because of the longer time required. Possible mass approximation	NM3: Gamma-ray Imaging		
Nuclear Resonance Fluorescence	Isotopic composition of Pu and U	Can work with a large amount of shielding	Tens of minutes	Commercially available (9) / for dismantlement (4)	Yes (1)	10, 12, 14		HENM1: Nuclear Resonance Fluorescence		
Passive Neutron Counting	Detects total passive neutron emissions; presence of neutron source; could be used as a Pu or Pu/U absence measurement.	Sensitive to amount of shielding. Does not tell what is the neutron source. Not likely to detect U source.	30 minutes or less	Readily in use today (9) / for dismantlement (8)	Yes	1–14	Severe constraints likely for any use in Step 8; not applicable for actual dismantlement operation (physical separation of components). Cannot discriminate between 240Pu and other neutron sources.	NM4: Passive Neutron Counting		
	Measuring neutron coincidence/ multiplicity will result in mass determination of ²⁴⁰ Pu.	Depends on the geometry of the source. However, this is not a key limitation that will make the technique inapplicable especially in view of low accuracy required. Not likely to detect U source.	10–60 minutes, few hours for triplets	Readily in use today (9) / for dismantlement (8)	Yes (7)	1–14	Severe constraints likely for any use in Step 8; not applicable for actual dismantlement operation (physical separation of components). Used in conjunction with isotopic information or declared Pu239/Pu240 ratio to estimate total mass of Pu. In many scenarios, passive neutron detection would be unnecessary during the transport steps because chain of custody techniques would be sufficient.			

IPNDV Working Group 6: Technologies for Verification Nuclear Explosive Device (NED) in Container, SNM Monitoring Technologies

Technology	Information Detected/Determined	(shielding issues, possible size restraints, etc.)	Approximate Measurement Time Scales	Simple Scenario (TRL)	IB Needed (TRL?)	Applicable Dismantlement Steps (1-14)	Comments	Related Technology Paper
Active Neutron Techniques	Detects delayed neutron emissions in response to bombardment with neutrons; used to determine U and Pu presence.	Unable to separate parameters such as mass, density, shape, fissile isotope(s). Geometry is important. Closer distances between source and NED are better.	4 minutes (1 minute irradiation + 3 minutes counting) to tens of minutes	Readily in use today	Yes	10, 12, 14	Cannot determine isotopics. Can determine the ratio between U and Pu. It is assumed that no active methods will be permitted with an assembled NED due to safety/security concerns.	
	Detects prompt neutron emissions simultanuously with neutron beam excitation; used to determine U233, U235, and Pu239 presence.	Unable to separate parameters such as mass, density, shape, fissile isotope(s). Geometry is important. Closer distances between source and NED are better.	Few minutes	Readily in use today (9)/ for dismantlement (6)	Yes	10, 12, 14	Technology has been proven in laboratory conditions; deployment for disarmament may introduce challenges. It is assumed that no active methods will be permitted with an assembled NED due to safety/security concerns.	
	Detects prompt / or delayed gamma emissions simultanuously with/or following neutron activation; can be used to determine presence of U and U isotopics.		Few minutes uo to 30 minutes	Readily in use today (9)/ for dismantlement (6)	Yes	10, 12, 14	Technology has been proven in laboratory conditions; deployment for disarmament may introduce challenges. Detection of gamma emissions may be used to indicate presence of explosives (low TRL). It is assumed that no active methods will be permitted with an assembled NED due to safety/security concerns.	
	Detects prompt / or delayed gamma emissions simultanuously with/or following neutron activation; can be used to determine presence of Pu and Pu isotopics.	Sensitive to amount of shielding. Depends on neutron flux and spectrum	Few minutes uo to 30 minutes	Readily in use today (9)/ for dismantlement (6)	Yes	10, 12, 14	Technology has been proven in laboratory conditions; deployment for disarmament may introduce challenges. Detection of gamma emissions may be used to indicate presence of explosives (low TRL). It is assumed that no active methods will be permitted with an assembled NED due to safety/security concerns.	
	PULSED NEUTRON: Detects time sequence of prompt fission neutrons in response to pulsed neutrons; used to determine presence of fissile U and Pu including differentiation between the two. The differentiation between U and Pu may not be very sensitive, and requires a different measurement regime.	Unable to separate parameters such as mass, density, shape, fissile isotope(s). The inability to separate parameters is a strong point of the method and not a limitation. Large neutron shield is not a problem, but will only slow-down the source neutrons further toward thermal energy.		Laboratory measurements (4)	Yes (2)	10, 12, 14	Technology has been proven in near ideal laboratory conditions and modeling; deployment on complete NED in container may introduce challenges. It is assumed that no active methods will be permitted with an assembled NED due to safety/security concerns.	NM5: Pulsed Neutron Interrogation

IPNDV Working Group 6: Technologies for Verification Nuclear Explosive Device (NED) in Container, SNM Monitoring Technologies

Technology	Information Detected/Determined	Key Limitations	Approximate Measurement	Equip Availability (TRL)/for	IB Needed	Applicable	Comments	Related Technology Paper
		(shielding issues, possible size restraints,	Time Scales	Simple Scenario (TRL)	(TRL?)	Dismantlement		
		etc.)				Steps (1-14)		
Fast Neutron Imaging	Fast neutron emission imaging: images	This technique is only practical for	One to several hours	Laboratory maintained	Yes (2)	Storage steps	Images are much less detailed than those	NM7: Fast Neutron Imaging
	neutron emitters; possible location and	plutonium assay.		systems (6) /			produced by transmission imaging.	
	shape of Pu.			for dismantlement (3)			Intended for imaging distributed sources or	
							an array of sources from a distance.	
							Imaging is only practical for the storage	
							steps because of the longer time required.	
	Fast neutron transmission imaging; active	Although all materials can be imaged with	Ten minutes to several	Laboratory maintained	Yes (2)	10, 12, 14	Measurement times strongly depend on	
	imaging technique from bombarding with	this technique, it cannot identify specific	hours	systems (6) /			the size of the imaged object and desired	
	fast neutrons; imaging of material without	materials, elements, or isotopes. Image		for dismantlement (3)			feature(s) to measure. May be used to	
	compositional detail.	contrast can be degraded when neutrons					verify that an item's internal geometry has	
		must penetrate a significant amount of low-	-				changed when appropriate. It is assumed	
		Z material.					that no active methods will be permitted	
							with an assembled NED due to	
							safety/security concerns.	
	Stimulated emission imaging; imaging of	This technique can be used to assay U in	Ten minutes to several	Laboratory maintained	Yes (2)	10, 12, 14	Particularly useful for U. Measurement	
	induced neutron emissions of an item by	the presence of Pu or other neutron	hours	systems (6) /			times strongly depend on the size of the	
	bombarding with neutrons; location and	emitter, but the characterization may be		for dismantlement (3)			imaged object. It is assumed that no active	
	shape of SNM.	more challenging. Low-Z materials					methods will be permitted with an	
		significantly degrade the image quality.					assembled NED due to safety/security	
							concerns.	
Muon Tomography	Imaging of muons, which are preferentially	Muon tomography does not have the	20 minutes to several hours	Commercial systems	Yes (1), if	Storage steps	Useful for relative density imaging; possible	NM8: Muon Tomography
	scattered by heavier elements	sensitivity to identify the exact mass.		available (9) /	measurements		verification of presence of high denisty	
		Depleted U cannot be distinguished from		laboratory measurements	provide high		material in container. Does not require an	
		HEU or Pu.		(4)	resolution		additional source. Will require significant	
					image		time, so only applicable to storage steps.	
Radiation Templates	Reference data set of radiation signatures	Template matching needs to account for	Several minutes	Demonstration completed	Yes (7)	1–14	Not necessarily a measurement instrument	NM9: Radiation Templates
	of a NED(s) or NED components; provides	time difference between initial template		(7)			but used in conjunction with a	
	unique set of signatures used to provide	and next measurement. Method is					measurement instrument to enable	
	confirmatory verification of an inspectable	geometry and background dependent.					comparision of a measurement with a	
	item against a "trusted" item's reference						known signature(s). This method is part	
	data set.						way between full imaging and simple	
							counting. Available but probably not	
							required in may transport scenarios, since	
							chain of custody technologies should be	
							sufficient there. Severe constraints likely	
							for any use in Step 8; not applicable for	
							actual dismantlement operation (physical	
							separation of components).	
Calorimetry	Measure of thermal power output of heat-	Cannot be used on assembled NED as there	Hours	Readily in use today (9) / for	No	10, 12, 14	Will require significant time, so only	NM1: Calorimetry
	producing materials;	are likely more heat sources than just the		dismantlement (1)			applicable to storage steps.	
		SNM.						